The Language Attitude Survey of
 Jamaica

Data Analysis

ThE JAMAICAN LANGUAGE UNIT
DEPARTMENT OF LANGUAGE, LINGUISTICS \& PHILOSOPHY
FACULTY OF HUMANITIES \& EDUCATION UNIVERSITY OF THE WEST INDIES, MONA

ACKNOWLEDGEMENTS

Abstract

The Jamaican Language Unit wishes to thank the students of the L33 1 CLASS WHO TOOK PART IN THE DATA COLLECTION PROCESS, THE GRADUATE STUDENTS WHO SUPERVISED THE FIELD WORK AND THE OFFICE STAFF AND THE DATA ENTRY PERSONNEL FOR THEIR COOPERATION IN MAKING THIS RESEARCH PROJECT A SUCCESSFUL ONE.

We would also like to especially thank Mr. Sebastian
THOMAS WHO PREPARED THIS STATISTICAL REPORT OF THE DATA ANALYSIS.

The Jamaican Language Unit
November, 2005

Table of Contents

List of Tables	3
Executive Summary	5
Data Presentation and Report for Language Attitude Survey of Jamaica	6
\bullet A. Profile of the Sample	6
\bullet B. Language Awareness	8
\bullet C. Government/Public Use	14
\bullet D. Language Use and Social Stereotypes	15
\bullet E. Education	30
\bullet F. Writing in a Standard Form	33
\bullet G. Occupation	37
Appendix	50
\bullet Questionnaires	50
\bullet SPSS Output	52

List of Tables

Table 1: Demographic Variables for Survey
Table 2: Sample Structure
Table 3: Sample Distribution of Languages Spoken
Table 4: Languages Spoken by Gender, Age, Parish \& Region
Table 5: To whom do you speak by Gender, Age, Parish \& Region
Table 6: To whom do you speak Patwa by to whom do you speak English
Table 7: If Minister made speech in Patwa would you think he is:
Table 8: If Minister made speech in Patwa by Gender, Age, Parish \& Region
Table 9: Sample Distribution of Stereotypes
Table 10: Who is more intelligent by Gender, Age, Parish \& Region
Table 11: Who is more honest by Gender, Age, Parish \& Region
Table 12: Who is more educated by Gender, Age, Parish \& Region
Table 13: Who is more friendly by Gender, Age, Parish \& Region
Table 14: Has more Money by Gender, Age, Parish \& Region
Table 15: Who is more helpful by Gender, Age, Parish \& Region
Table 16: Which school is better for the Jamaican Child
Table 17: Which school is better by Gender, Age, Parish \& Region
Table 18: Sample Distribution of Writing Variables
Table 19: Is Patwa a Language by Gender, Age, Parish \& Region
Table 20: Should Patwa be an Official Language by Gender, Age, Parish \& Region

Table 21: Occupation

Table 22: Languages Spoken by Occupation
Table 23: To whom do you speak by Occupation
Table 24: Government/Public Use by Occupation
Table 25: Who is more Intelligent by Occupation
Table 26: Who is more Honest by Occupation
Table 27: Who is more Educated by Occupation
Table 28: Who is more Friendly by Occupation
Table 29: Who is has more Money by Occupation
Table 30: Who is more Helpful by Occupation
Table 31: Which school would be better by Occupation
Table 32: Is Patwa a Language by Occupation
Table 33: Should Patwa be an Official Language by Occupation

Executive Summary

The Language Attitude Survey of Jamaica (LAS) was an island wide study conducted by the Jamaican Language Unit (JLU) to assess the views of Jamaicans towards Patwa (Jamaican Creole) as a language. The sample consisted of 1,000 Jamaicans, stratified along the variables of region (western, central and eastern), area (urban and rural), age (18-30yrs, 31-50yrs and 51 yrs and older) and gender.

The sample, in general, had a fairly positive view of Patwa. The majority felt that Patwa was a language and that parliament should make it an official language alongside English. Most indicated that they spoke Patwa with family and friends but not with strangers and co-workers. A significant majority of the sample also felt that a school that taught in English and Patwa would be better than an English only school for Jamaican children.

Despite this, several stereotypical views of Patwa were held by a number of respondents in the sample. For instance, most people felt that an English speaker was more intelligent and educated. Additionally, less than 10% of the sample thought, that a Patwa speaker would have more money than an English speaker.

Several significant relationships were found between the demographic and language variables. The oldest age group (51 years and older) tended to have more negative or conservative views of Patwa when compared with the younger age groups.

Occupation also seemed to have a significant impact on language variables. Though still relatively positive, unskilled/housewives and unemployed individuals tended to be more likely to have negative attitudes towards Patwa.

Data Presentation and Report for Language Attitude Survey of Jamaica

A. Profile of the Sample

The Language Attitude Questionnaire, which is a part of a study conducted by the Jamaican Language Unit (JLU), was randomly administered to a total of 1,000 Jamaican respondents. The purpose of this section is to provide an overview of the demographic characteristics of these participants, as well as how these characteristics were used to design the sample structure for the survey.

Table 1: Demographic Variables for Survey (N=1,000)		
Region	Western	Frequency (\%)
	Central	200 (20\%)
	Eastern	200 (20\%)
Area	Urban	600 (60\%)
	Rural	519 (51.9\%)
Gender	Male	481 (48.1\%)
	Female	501 (50.1\%)
Age Groups	$18-30 y r s$	499 (49.9\%)
	$31-50 y r s$	334 (33.4\%)
	$51-80+y r s$	334 (33.4\%)

As can be seen in table 1, the majority of respondents were from eastern parishes (60\%), while western and central parishes equally comprised the remaining 40% of the sample. In terms of urban and rural parishes, respondents constituted 51.9% and 41.8% of these areas respectively.

There was little difference in the number of male and female respondents with the male proportion being slightly larger at 51.1%. This equality between groups was also true of the three age groups in the sample, with 18-30 year olds, 31-50 year olds and those 51 years or older, representing roughly a third of the sample each.

Table 2: Sample Structure ($\mathrm{N}=1,000$)					
			Age Groups		
Western	Urban		18-30yrs	31-50yrs	51-80+yrs
		Males	17 (50\%)	17 (50\%)	17 (51.5\%)
		Females	17 (50\%)	17 (50\%)	16 (48.5\%)
		All Sexes	34	34	33
	Rural	Males	17 (51.5\%)	17 (51.5\%)	16 (48.5\%)
		Females	16 (48.5\%)	16 (48.5\%)	17 (51.5\%)
		All Sexes	33	33	33
	All Areas		67	67	66
Central	Urban	Males	17 (50\%)	17 (51.5\%)	16 (37.2\%)
		Females	17 (50\%)	16 (48.5\%)	27 (62.8\%)
		All Sexes	34	33	43
	Rural	Males	17 (51.5\%)	16 (47.1\%)	17 (73.9\%)
		Females	16 (48.5\%)	18 (52.9\%)	6 (26.1\%)
		All Sexes	33	34	23
	All Areas		67	67	66
Eastern	Urban	Males	50 (50\%)	50 (50\%)	58 (53.7\%)
		Females	50 (50\%)	50 (50\%)	50 (46.3\%)
		All Sexes	100	100	108
	Rural	Males	50 (50\%)	50 (50\%)	42 (45.7\%)
		Females	50 (50\%)	50 (50\%)	50 (54.3\%)
		All Sexes	100	100	92
	All Areas		200	200	200
Total			334	334	332

Region (western, central and eastern), area (urban and rural), age (18-30yrs, 31-50yrs and 51 yrs and older) and gender were the variables used to design the stratified sample for the LAS. In the final analysis 36 individual strata broken down by the four key variables were formed.

As has been previously indicated the majority of the sample came from the eastern region, this meant that the twelve strata found in this region were significantly larger than the twenty four found in the other regions. The strata in the western and central regions were more less equal to each other, with the exception of the central region's, rural, 51 years and older female group (which was relatively smaller) and the central region's, urban, 51 years and older female group (which was relatively larger).

B. Language Awareness

Having gathered demographic information, the second major subsection of the Language Attitude questionnaire was Language Awareness. This section had questions on what languages respondents declared themselves speakers of, and to whom respondents spoke English and Patwa. It should be noted that the languages of focus for this project were English and Patwa, this meant that any other languages that participants declared they spoke outside of these languages were ignored.

What Languages do you Speak?		Frequency	(\%)
English		109	(89.3\%)
Patwa		105	(88.9\%)
Both		784	(78.4\%)
To whom do you speak?		Frequency	(\%)
English	Friends/Family only	79	7.9\%
	Strangers/Co-workers	571	57.1\%
	Everyone	262	26.2\%
	No One	88	8.8\%
Patwa	Friends/Family only	629	62.9\%
	Strangers /Co-workers	32	3.2\%
	Everyone	285	28.5\%
	No One	54	5.4\%

As can be seen from table 3, the majority of the sample stated that they spoke both English and Patwa (78.4\%). Those who spoke English or Patwa only, were fewer than 11% of the sample each.

Several significant differences were observed with respect to whom respondents were most likely to speak English to as opposed to Patwa. Fifty seven per cent of the sample reported that they were most likely to speak English to strangers and co-workers. This is in sharp contrast to the 3.2% of the sample that said they were most likely to speak Patwa to the same group. The most likely group that respondents said they would speak Patwa
to, were friends and family at 62.9%. Again this is very different to the percentage of the sample that indicated they were most likely to speak English to friends and family (7.9\%).

Gender	Languages Spoken			TOTAL
	English Count(\%)	Patwa Count(\%)	$\begin{gathered} \text { Both } \\ \text { Count(\%) } \end{gathered}$	
Male	59 (11.8\%)	68 (13.6\%)	372 (74.5\%)	$\begin{gathered} \hline n=499 \\ 100 \% \end{gathered}$
Female	50 (10\%)	37 (7.4\%)	412 (82.6\%)	$\begin{gathered} \mathrm{n}=499 \\ 100 \% \end{gathered}$
$\begin{aligned} & \text { Age Groups } \\ & \chi^{2}(4)=19.35 ; p=0.001 \end{aligned}$	English Count(\%)	Patwa Count(\%)	$\begin{gathered} \text { Both } \\ \text { Count(\%) } \end{gathered}$	TOTAL
18-30yrs	26 (7.8\%)	22 (6.6\%)	285 (85.6\%)	$\begin{gathered} \mathrm{n}=333 \\ 100 \% \end{gathered}$
31-50yrs	34 (10.2\%)	39 (11.7\%)	261 (78.1\%)	$\begin{gathered} \mathrm{n}=334 \\ 100 \% \end{gathered}$
51-80+yrs	49 (14.8\%)	44 (13.3\%)	238 (71.9\%)	$\begin{gathered} \mathrm{n}=331 \\ 100 \% \\ \hline \end{gathered}$
$-\quad \text { Area } \chi^{2}(2)=6.52 ; p=0.038$	English Count(\%)	Patwa Count(\%)	Both Count(\%)	TOTAL
Urban	69 (13.3\%)	52 (10.1\%)	396 (76.6\%)	$\begin{gathered} \mathrm{n}=517 \\ 100 \% \end{gathered}$
Rural	40 (8.3\%)	53 (11\%)	388 (80.7\%)	$\begin{gathered} \mathrm{n}=481 \\ 100 \% \end{gathered}$
$\begin{aligned} & -\quad \text { Region } \\ & \chi^{2}(4)=13.92 ; p=0.008 \end{aligned}$	$\begin{gathered} \text { English } \\ \text { Count(\%) } \end{gathered}$	Patwa Count(\%)	Both Count(\%)	TOTAL
Western	13 (6.5\%)	22 (11.1\%)	164 (82.4\%)	$\begin{gathered} \mathrm{n}=199 \\ 100 \% \end{gathered}$
Central	18 (9\%)	31 (15.5\%)	151 (75.5\%)	$\begin{gathered} \mathrm{n}=200 \\ 100 \% \end{gathered}$
Eastern	78 (13\%)	52 (8.7\%)	469 (78.3\%)	$\begin{gathered} n=599 \\ 100 \% \end{gathered}$

Table 4 summarizes a chi-square (χ^{2}) analysis of the languages spoken by the key demographic variables in the study. All four tests found statistically significant relationships between languages spoken and the variables ($p<0.05$).

With regards to gender, men were more likely than women to speak Patwa only (13.6\% versus 7.4%). Women on the other hand, were 8% more likely than men to speak both

English and Patwa. The contingency coefficient showed that this relationship, though significant, was fairly weak $(\mathrm{C}=0.109)$.

Younger age groups were more likely to state that they spoke both English and Patwa when compared to older age groups. Eighty six per cent of the $18-30$ year age group indicated that they spoke both languages; this was just under 8% more than the 31-50 year (78.1\%) age group and 14% more than the 51 year and older group (71.9\%). Additionally, the two oldest age groups were more likely than the youngest age group to declare they spoke English only or Patwa only. The contingency coefficient found that the relationship was only slightly stronger than the relationship with gender $(\mathrm{C}=0.139)$.

With regards to the relationship between area and languages spoken, individuals from rural areas were more likely to speak both languages (80.7\%), than those from urban areas 76.6%. There was only a minimal difference between the two areas in terms of the percentages of those who spoke Patwa only. The contingency coefficient found that this relationship was very weak $(\mathrm{C}=0.081)$.

Individuals from western parishes were the most likely to speak both languages (82.4\%). This compares with 75.5% of individuals from central parishes and 78.3% of persons from eastern parishes. This trend changes when comparing the three regions in terms of speaking only English as here, eastern parishes at 13% had the highest proportion of the three regions. The strength of this relationship was weak ($\mathrm{C}=0.117$).

Gender	${ }^{1}$ English				${ }^{2}$ Patwa			
$\begin{aligned} & { }^{1} \chi^{2}(\overline{3})=18.773 ; \mathbf{p}=0.000 \\ & { }^{2} \chi^{2}(3)=31.68 ; \mathbf{p}=\mathbf{0 . 0 0 0} \end{aligned}$	Family Count(\%)	Strangers Count(\%)	Everyone Count(\%)	No One Count(\%)	Family Count(\%)	Strangers Count(\%)	Everyone Count(\%)	No One Count (\%)
Male	42 (8.4\%)	258 (51.5\%)	141 (28.1\%)	60 (12\%)	274 (54.7\%)	23 (4.6\%)	168 (33.5\%)	36 (7.2\%)
Female	37 (7.4\%)	313 (62.7\%)	121 (24.2\%)	28 (5.6\%)	355 (71.1\%)	9 (1.8\%)	117 (23.4\%)	18 (3.6\%)
$\begin{aligned} & \text { Age Groups } \\ & { }^{1}{ }^{1} \chi^{2}(6)=29.39 ; p=0.000 \\ & { }^{2} \chi^{2}(6)=36.17 ; p=0.000 \end{aligned}$	$\begin{gathered} \text { Family } \\ \text { Count(\%) } \end{gathered}$	Strangers Count(\%)	Everyone Count(\%)	No One Count(\%)	Family Count(\%)	Strangers Count(\%)	Everyone Count(\%)	No One Count(\%)
18-30yrs	25 (7.5\%)	222 (66.5\%)	73 (21.9\%)	14 (4.2\%)	245 (73.4\%)	6 (1.8\%)	75 (22.5\%)	8 (2.4\%)
31-50yrs	25 (7.5\%)	190 (56.9\%)	87 (26\%)	32 (9.6\%)	206 (61.7\%)	12 (3.6\%)	101 (30.2\%)	15 (4.5\%)
51-80+yrs	29 (8.7\%)	159 (47.9\%)	102 (30.7\%)	42 (12.7\%)	178 (53.6\%)	14 (4.2\%)	109 (32.8\%)	31 (9.3\%)
$\begin{aligned} & \text { Area } \\ & { }^{1}{ }^{1} \chi^{2}(3)=11.50 ; p=0.009 \\ & { }^{2} \chi^{2}(3)=19.75 ; p=0.000 \end{aligned}$	$\begin{gathered} \text { Family } \\ \text { Count(\%) } \end{gathered}$	Strangers Count(\%)	Everyone Count(\%)	No One Count(\%)	Family Count(\%)	Strangers Count(\%)	Everyone Count(\%)	No One Count(\%)
Urban	52 (10\%)	299 (57.6\%)	133 (25.6\%)	35 (6.7\%)	349 (67.2\%)	22 (4.2\%)	118 (22.7\%)	30 (5.8\%)
Rural	27 (5.6\%)	272 (56.5\%)	129 (26.8\%)	53 (11\%)	280 (58.2\%)	10 (2.1\%)	167 (34.7\%)	24 (5\%)
$\begin{array}{\|l} \hline{ }^{1} \chi^{2} \quad \text { Region } \\ \chi^{2}(6)=11.49 ; p=0.074 \\ { }^{2} \chi^{2}(6)=11.51 ; p=0.074 \\ \hline \end{array}$	$\begin{gathered} \text { Family } \\ \text { Count(\%) } \end{gathered}$	Strangers Count(\%)	Everyone Count(\%)	No One Count(\%)	$\begin{gathered} \text { Family } \\ \text { Count(\%) } \end{gathered}$	Strangers Count(\%)	Everyone Count(\%)	No One Count(\%)
Western	14 (7\%)	125 (62.5\%)	38 (19\%)	23 (11.5\%)	121 (60.5\%)	9 (4.5\%)	65 (32.5\%)	5 (2.5\%)
Central	16 (8\%)	110 (55\%)	52 (26\%)	22 (11\%)	127 (63.5\%)	8 (4\%)	58 (29\%)	7 (3.5\%)
Eastern	49 (8.2\%)	336 (56\%)	172 (28.7\%)	43 (7.2\%)	381 (63.5\%)	15 (2.5\%)	162 (27.5\%)	42 (7\%)

Table 5 displays crosstabulations done with the key demographic variables and to whom individuals were most likely to speak Patwa and English. Males at 12% were most likely to speak English with no one when compared to females (5.6\%).

While the majority of respondents from both genders said they were most likely to use English when addressing strangers/co-workers, females were 10% to do so. As it regards with whom individuals were most likely to speak Patwa, with males were 10% more likely than females to say everyone. Females on the other hand were approximately 16% more likely to indicate that they spoke Patwa to family/friends (71.1% versus 54.7%).
χ^{2} tests on both of these relationships were statistically significant at a level of significance of less than 0.01 . The contingency coefficient for the relationship between gender and with whom you speak Patwa was 0.178 , which was slightly larger than the relationship between gender and with whom you speak English ($\mathrm{C}=0.137$). Both coefficients indicated fairly weak relationships.

The χ^{2} test also found significant relationships between age and both language variables. With the exception of those who were 51 years and older, the majority of all age groups said they were most likely to speak English with strangers/co-workers only (18-30 years 66.5%, 31-50 years 56.9%, 51 years and older 47.9%). Older age groups were more likely to speak English to everyone when compared to younger age groups. Whereas 21.9% of 18-30 year olds responded that they spoke English to everyone, 26\% of 31-50 year olds said they did so, compared to 30.7% of respondents 51 years or older.

Interestingly, the two older age groups were also more likely to speak Patwa to everyone compared to the youngest age group (30.2% and 32.8%, compared to 22.5%). The youngest age group at 73.4% was more likely than the other age groups to speak Patwa to family/friends only. The percentage of 51 year and older respondents who spoke Patwa to no one (9.3\%), was larger than the percentage of 18-30 year olds and 31-50 year who claimed this (2.4% and 4.5% respectively).

The contingency coefficients for both relationships were weak, with the one for age in relation to whom you speak English with $(\mathrm{C}=0.169)$ being slightly smaller than the one for the relationship between age and whom you speak Patwa with $(\mathrm{C}=0.190)$.

The relationships between area and with whom you speak English and Patwa were both statistically significant. Both were however weak as the contingency coefficient for the relationship between area and with whom you speak English was 0.107, and the one for area and with whom you speak Patwa was 0.141 .

A fairly equal majority of both urban and rural respondents stated that they were most likely to speak English to strangers/co-workers only (57.6% and 56.5% respectively). Urban participants were just under 5\% more likely to speak English with family/friends only than individuals from rural areas.

At 67.2\% urban individuals were also almost 10% more likely than rural participants (58.2\%) to speak Patwa with family/friends only. However, rural respondents were 12% more likely to speak Patwa with everyone when compared to urban respondents.
χ^{2} tests on both language variables and region found no significant relationships. The majority of respondents in all regions were most likely to speak English to strangers/coworkers only, while the majority in all three regions spoke Patwa to family/friends only.

To whom do you speak English$\chi^{2}(9)=409.44 ; p=0.000$	To whom do you speak Patwa				TOTAL
	Family Count(\%)	Strangers Count(\%)	Everyone Count(\%)	No One Count(\%)	
Family	$\begin{gathered} 59 \\ (9.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ (18.8 \%) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (3.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (7.4 \%) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{n}=79 \\ & 100 \% \\ & \hline \end{aligned}$
Strangers	$\begin{gathered} 482 \\ (76.6 \%) \end{gathered}$	$\begin{gathered} 13 \\ (40.6 \%) \end{gathered}$	$\begin{gathered} 74 \\ (26 \%) \end{gathered}$	$\begin{gathered} 2 \\ (3.7 \%) \end{gathered}$	$\begin{gathered} \mathrm{n}=571 \\ 100 \% \end{gathered}$
Everyone	$\begin{gathered} 75 \\ (11.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (37.5 \%) \end{gathered}$	$\begin{gathered} 130 \\ (45.6 \%) \end{gathered}$	$\begin{gathered} 45 \\ (83.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}=262 \\ 100 \% \\ \hline \end{gathered}$
No One	$\begin{gathered} 13 \\ (2.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (3.1 \%) \end{gathered}$	$\begin{gathered} 71 \\ (24.9 \%) \end{gathered}$	$\begin{gathered} 3 \\ (5.6 \%) \end{gathered}$	$\begin{aligned} & \mathrm{n}=88 \\ & 100 \% \end{aligned}$

Table 7 shows the relationship between whom individuals spoke Patwa with and those they spoke English with. A chi-square test found this to be statistically significant relationship and the contingency coefficient showed that the relationship was a fairly strong one ($\mathrm{C}=0.539$).

Those who spoke Patwa to family were the most likely group to speak English to strangers (76.6\%). Additionally, 40.6% those who spoke Patwa to strangers were also likely to speak English to strangers. Unsurprisingly, the majority of respondents who said that they spoke Patwa to no one (83.3\%) said that they spoke English to everyone.

C. Government/Public Use

The third subsection of the questionnaire sought to examine attitudes towards Patwa use by government officials.

Table 7: If Minister made speech in Patwa would you think he is: $\mathbf{(N = 1 , 0 0 0})$	
	Frequency (\%)
Communicate better with the public	676 (67.8\%)
Talk down to the masses	205 (20.6\%)
None	116 (11.6\%)

When asked what they would think if the Prime Minister or Minister of Finance made his speech in Patwa, 67.8% of the sample responded that they would think he was trying to "communicate better with the public". Only 20.6% of respondents believed that the Ministers would be trying to "talk down to the masses".

Table 8: If Minister made speech in Patwa by Gender, Age, Area \& Region

Gender	If Minister made speech in Patwa			TOTAL
$\chi^{2}(2)=3.43 ; p=0.180$	Communicate better with public Count(\%)	Talk down to the masses Count(\%)	$\begin{gathered} \text { None } \\ \text { Count(\%) } \end{gathered}$	
Male	349 (69.8\%)	91 (18.2\%)	60 (12\%)	$\begin{gathered} n=500 \\ 100 \% \end{gathered}$
Female	327 (65.8\%)	114 (22.9\%)	56 (11.3\%)	$\begin{gathered} \mathrm{n}=497 \\ 100 \% \end{gathered}$
$\begin{aligned} & \text { - Age Groups } \\ & \chi^{2}(4)=1.47 ; p=0.832 \end{aligned}$	Communicate better with public Count(\%)	Talk down to the masses Count(\%)	None Count(\%)	TOTAL
18-30yrs	225 (67.4\%)	71 (21.3\%)	38 (11.4\%)	$\begin{array}{\|c\|} \hline n=334 \\ 100 \% \\ \hline \end{array}$
31-50yrs	219 (66\%)	71 (21.4\%)	42 (12.7\%)	$\begin{array}{\|c\|} \hline n=332 \\ 100 \% \\ \hline \end{array}$
51-80+yrs	232 (70.1\%)	63 (19\%)	36 (10.9\%)	$\begin{gathered} n=331 \\ 100 \% \\ \hline \end{gathered}$
$\begin{aligned} & \text { Area }=-\quad . \quad \\ & \chi^{2}(2)=3.22 ; p=0.200 \end{aligned}$	Communicate better with public Count(\%)	Talk down to the masses Count(\%)	None Count(\%)	TOTAL
Urban	338 (65.3\%)	115 (22.2\%)	65 (12.5\%)	$\begin{array}{\|c\|} \hline n=518 \\ 100 \% \\ \hline \end{array}$
Rural	338 (70.6\%)	90 (18.8\%)	51 (10.6\%)	$\begin{array}{\|c\|} \hline n=479 \\ 100 \% \\ \hline \end{array}$
$=- \text { Region }=-$	Communicate better with public Count(\%)	Talk down to the masses Count(\%)	None Count(\%)	TOTAL
Western	152 (76.8\%)	28 (14.1\%)	18 (9.1\%)	$\begin{gathered} \hline n=198 \\ 100 \% \end{gathered}$
Central	133 (66.5\%)	49 (24.5\%)	18 (9\%)	$\begin{gathered} \hline n=200 \\ 100 \% \\ \hline \end{gathered}$
Eastern	391 (65.3\%)	128 (21.4\%)	80 (13.4\%)	$\begin{gathered} n=599 \\ 100 \% \end{gathered}$

Table 7 shows how this government use variable was related to the key demographic variables. No statistical significance was observed for the relationships between government use and gender, age or area.

A χ^{2} analysis of government use in relation to region was however significant. Respondents from western parishes at 76.8% were more than 10% more likely than individuals from central (66.5\%) and eastern regions (65.3\%) to think the ministers would be trying to "communicate better with the public". By extension, people from central and eastern regions were more likely to view the ministers as "talking down to the masses" than those from western regions. The contingency coefficient showed that this was a weak relationship ($\mathrm{C}=0.111$).

D. Language Use and Social Stereotypes

This represented the fourth section of the survey instrument and it sought to identify stereotype notions individuals hold about speakers of one language versus the other.

Which Speaker do you think:		Frequency	(\%)
Is more Intelligent	Patwa	73	7.7\%
	English	550	57.8\%
	Neither/Both	329	34.6\%
Is more Honest	Patwa	283	31\%
	English	278	30.4\%
	Neither/Both	353	38.6\%
Is more Educated	Patwa	59	6.2\%
	English	591	61.7\%
	Neither/Both	308	32.2\%
Is more Friendly	Patwa	379	39.8\%
	English	240	25.2\%
	Neither/Both	333	35\%
Has more Money	Patwa	77	8.8\%
	English	390	44.7\%
	Neither/Both	406	46.5\%
Is more Helpful	Patwa	300	31.9\%
	English	292	31.1\%
	Neither/Both	348	37\%

More Intelligent/More Honest

Only 7.7% of the sample believed that a person speaking Patwa would be more intelligent than a person speaking English. Just over a third of the sample (34.6\%) thought neither would be more intelligent. There were no major differences between the number of people who thought that either one of the speakers would be more honest. Thirty one per
cent felt that the Patwa speaker would be more honest, compared to 30.4% who thought the English speaker would be more honest.

More Educated/More Friendly

Unsurprisingly, the pattern for the speaker who respondents thought would be more educated was very similar to the one observed for intelligence. Only 6.6% of the sample believed that the Patwa speaker would be more educated compared with 61.7% who thought the English speaker would be more educated. A larger proportion of the sample (39.8\%) thought that the Patwa speaker was friendlier. This is in contrast to the 25.2% who thought that the English speaker was friendlier.

More Money/More Helpful

Only 8.8% of the sample thought that the Patwa speaker would have more money. It should be noted however that 46.5% of the sample felt that neither would have more money. There were no major differences in the number of people who thought the Patwa speaker would be more helpful versus those who thought the English speaker would be more helpful.

Gender	Which speaker is more Intelligent			TOTAL
	$\begin{gathered} \text { English } \\ \text { Count(\%) } \end{gathered}$	Patwa Count(\%)	Neither Count(\%)	
Male	260 (53.9\%)	44 (9.1\%)	178 (36.9\%)	$\begin{gathered} \mathrm{n}=482 \\ 100 \% \end{gathered}$
Female	290 (61.7\%)	29 (6.2\%)	151 (32.1\%)	$\begin{gathered} \mathrm{n}=470 \\ 100 \% \end{gathered}$
$\begin{aligned} & \text { Age Groups } \\ & \chi^{2}(4)=5.01 ; p=0.286 \end{aligned}$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
18-30yrs	182 (56.7\%)	24 (7.5\%)	115 (35.8\%)	$\begin{gathered} \mathrm{n}=321 \\ 100 \% \\ \hline \end{gathered}$
31-50yrs	172 (55.3\%)	21 (6.8\%)	118 (37.9\%)	$\begin{gathered} \mathrm{n}=311 \\ 100 \% \end{gathered}$
51-80+yrs	196 (61.3\%)	28 (8.8\%)	96 (30\%)	$\begin{gathered} \mathrm{n}=320 \\ \mathbf{1 0 0 \%} \end{gathered}$
$\overline{\chi^{2}(2)}=9.85 ; \frac{\text { Area }}{p=0.007}$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Urban	272 (56.2\%)	27 (5.6\%)	185 (38.2\%)	$\begin{gathered} \mathrm{n}=484 \\ 100 \% \end{gathered}$
Rural	278 (59.4\%)	46 (9.8\%)	144 (30.8\%)	$\begin{gathered} \mathrm{n}=468 \\ 100 \% \end{gathered}$
$\overline{\chi^{2}(4)}=\text { Region }=$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Western	127 (66.1\%)	10 (5.2\%)	55 (28.6\%)	$\begin{gathered} \mathrm{n}=192 \\ 100 \% \\ \hline \end{gathered}$
Central	121 (62.1\%)	20 (10.3\%)	54 (27.7\%)	$\begin{gathered} \mathrm{n}=195 \\ 100 \% \end{gathered}$
Eastern	302 (53.5\%)	43 (7.6\%)	220(38.9\%)	$\begin{gathered} \mathrm{n}=565 \\ 100 \% \end{gathered}$

A χ^{2} analysis of intelligence with the demographic variables found significant relationships for all of the variables, except age.

More Intelligent by Gender

Approximately 62% of female respondents thought that the English speaker would be more intelligent compared to 54% of males. Males were slightly more likely than females
to think that either the Patwa speaker was more intelligent or that neither speaker was more intelligent. The contingency coefficient showed that this relationship was very weak ($\mathrm{C}=0.084$).

More Intelligent by Area

Urban respondents were somewhat more likely than rural respondents to think that neither the English nor the Patwa speaker was more intelligent (38.2\% versus 30.8\%). On the other hand, rural residents were slightly more likely to think that the Patwa speaker was more intelligent. The contingency coefficient found a weak relationship between intelligence and area $(\mathrm{C}=0.101)$.

More Intelligent by Region

There was also a significant relationship between region and intelligence. Individuals from eastern regions were up to 13% less likely than individuals from western and central regions to think that the English speaker was more intelligent (53.5\% compared to 66.1% and 62.1%). Eastern regions were more likely to think that neither speaker was more intelligent (38.9% compared to 28.6% and 27.7%). The relationship between region and intelligence was found to be a fairly weak one $(\mathrm{C}=0.128)$.

Gender	Which speaker is more Honest			TOTAL
	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	
Male	133 (28.5\%)	156 (33.5\%)	177 (38\%)	$\begin{gathered} \hline n=466 \\ 100 \% \\ \hline \end{gathered}$
Female	145 (32.4\%)	127 (28.3\%)	176 (39.3\%)	$\begin{gathered} \mathrm{n}=488 \\ 100 \% \end{gathered}$
$\begin{aligned} & \text { Age Groups } \\ & \chi^{2}(4)=9.44 ; p=0.051 \end{aligned}$	English Count(\%)	$\begin{gathered} \text { Patwa } \\ \text { Count(\%) } \end{gathered}$	Neither Count(\%)	TOTAL
18-30yrs	79 (25.5\%)	108 (34.8\%)	123 (39.7\%)	$\begin{gathered} \mathrm{n}=310 \\ 100 \% \end{gathered}$
31-50yrs	93 (30.3\%)	87 (28.3\%)	127 (41.4\%)	$\begin{gathered} \mathrm{n}=307 \\ 100 \% \end{gathered}$
51-80+yrs	106 (35.7\%)	88 (29.6\%)	103 (34.7\%)	$\begin{gathered} \mathrm{n}=297 \\ 100 \% \\ \hline \end{gathered}$
$\overline{\chi^{2}(2)}=11.61 ; p=0.003$	English Count(\%)	$\begin{gathered} \text { Patwa } \\ \text { Count(\%) } \end{gathered}$	Neither Count(\%)	TOTAL
Urban	124 (27\%)	133 (29\%)	202 (44\%)	$\begin{gathered} \hline \mathrm{n}=459 \\ 100 \% \\ \hline \end{gathered}$
Rural	154 (33.8\%)	150 (33\%)	151 (33.2\%)	$\begin{gathered} n=455 \\ 100 \% \end{gathered}$
$\overline{\chi^{2}(4)}=\frac{\text { Region }}{}=$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Western	70 (37\%)	55 (29.1\%)	64 (33.9\%)	$\begin{gathered} \mathrm{n}=189 \\ 100 \% \\ \hline \end{gathered}$
Central	67 (36.2\%)	54 (29.2\%)	64 (34.6\%)	$\begin{gathered} \mathrm{n}=185 \\ 100 \% \\ \hline \end{gathered}$
Eastern	141 (26.1\%)	174 (32.2\%)	225 (41.7\%)	$\begin{gathered} n=540 \\ 100 \% \end{gathered}$

More Honest by Age

No significant relationship was found between honesty and gender or age. With regard to age however, a sizeable difference was observed between the youngest and oldest age groups as the 51 year and older group was more than 10% more likely to think that the English speaker was more honest (35.7\%) than the younger age group (25.5\%). The
youngest age group also had the highest percentage of those who thought that the Patwa speaker would be more honest.

More Honest by Area

Urban respondents were significantly more likely to think that neither the Patwa nor the English speaker would be more honest (44\%) compared to 33.2% of rural respondents. Rural participants were marginally more likely to think that one or the other of the two speakers would be more intelligent. The strength of the relationship between these two variables was weak $(\mathrm{C}=0.128)$.

More Honest by Region

Individuals from western and central regions were more likely than those from eastern regions to think that the English speaker would be more honest (37\% and 36.2\% versus 26.1\%). Eastern respondents were the most likely group to think that neither speaker would be more honest. They were also marginally more likely to think that the Patwa speaker would be more honest (32.2% compared to 29.1% western parishes and 29.2% central parishes). The contingency coefficient for this relationship was equal to 0.113 . This indicates that perceptions of honesty are only weakly related to region.

Table 12: Who is more Educated by Gender, Age, Area \& Region

Gender	Which speaker is more Educated			TOTAL
	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	
Male	291 (60.4\%)	34 (7.1\%)	157 (32.6\%)	$\begin{gathered} \mathrm{n}=482 \\ 100 \% \end{gathered}$
Female	300 (63\%)	25 (5.3\%)	151 (31.7\%)	$\begin{gathered} \mathrm{n}=476 \\ 100 \% \end{gathered}$
$\begin{gathered} \text { Age Groups } \\ \chi^{2}(4)=22.07 ; p=0.000 \end{gathered}$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
18-30yrs	179 (55.6\%)	17 (5.3\%)	126 (39.1\%)	$\begin{gathered} n=322 \\ 100 \% \end{gathered}$
31-50yrs	188 (58.8\%)	21 (6.6\%)	111 (34.7\%)	$\begin{gathered} n=320 \\ 100 \% \end{gathered}$
51-80+yrs	224 (70.9\%)	21 (6.6\%)	71 (22.5\%)	$\begin{gathered} \mathrm{n}=316 \\ 100 \% \end{gathered}$
$\overline{\chi^{2}(2)}=6.36 ; p=0.042$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Urban	298 (60.9\%)	22 (4.5\%)	169 (34.6\%)	$\begin{gathered} \hline n=489 \\ 100 \% \end{gathered}$
Rural	293 (62.5\%)	37 (7.9\%)	139 (29.6\%)	$\begin{gathered} n=469 \\ 100 \% \end{gathered}$
$\overline{\chi^{2}(4)}=\frac{\text { Region }}{}=$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Western	129 (65.5\%)	12 (6.1\%)	56 (28.4\%)	$\begin{gathered} \mathrm{n}=197 \\ 100 \% \end{gathered}$
Central	121 (62.7\%)	10 (5.2\%)	62 (32.1\%)	$\begin{gathered} \hline n=193 \\ 100 \% \\ \hline \end{gathered}$
Eastern	341 (60\%)	37 (6.5\%)	190 (33.5\%)	$\begin{gathered} \mathrm{n}=568 \\ 100 \% \end{gathered}$

χ^{2} tests found no significant relationship between stereotypes of education and gender or region. Neither of these variables had any noteworthy impact on the general sample's perception that the English speaker would be more educated.

More Educated by Age

With regards to age and the speaker who participants felt was more educated, while the majority of all age groups felt that the English speaker would be more educated, the 51 and older age group was overwhelmingly the most likely group to believe this. Seventy one per cent of the 51 and older age group indicated that the English speaker would be more educated. This compares with 55.6% of the 18 -30year age group and 58.8% of the $31-50$ year age group. It is also interesting to note that the youngest age group at 39.1% were the most likely group to think neither speaker would be more educated when compared to the other two age groups. The contingency coefficient at 0.15 indicated that the relationship between perceptions of education and age was somewhat weak.

More Educated by Area

The χ^{2} test of the relationship between area and which speaker is more educated, also proved to be significant. This relationship was only a marginal one however, as the strength of the relationship was found to be very weak ($\mathrm{C}=0.081$) .

Respondents from rural areas were slightly more likely to think that the Patwa speaker would be more educated (7.9% versus 4.5%). This trend was also observed in terms of those who thought the English speaker was more educated. Again rural respondents were slightly ahead of urban respondents (62. 5\% compared to 60.9\%).

Gender	Which speaker is more Friendly			TOTAL
	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	
Male	126 (26.1\%)	189 (39.2\%)	167 (34.6\%)	$\begin{gathered} \hline n=482 \\ 100 \% \end{gathered}$
Female	114 (24.3\%)	190 (40.4\%)	166 (35.3\%)	$\begin{gathered} \hline \mathbf{n}=333 \\ 100 \% \end{gathered}$
$\begin{aligned} & \text { Age Groups } \\ & \chi^{2}(4)=7.95 ; p=0.093 \end{aligned}$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
18-30yrs	75 (23.3\%)	123 (38.2\%)	124 (38.5\%)	$\begin{gathered} \hline n=322 \\ 100 \% \end{gathered}$
31-50yrs	71 (22.3\%)	134 (42.1\%)	113 (35.5\%)	$\begin{gathered} \mathrm{n}=318 \\ 100 \% \end{gathered}$
51-80+yrs	94 (30.1\%)	122 (39.1\%)	96 (30.8\%)	$\begin{gathered} \mathrm{n}=312 \\ 100 \% \end{gathered}$
$\overline{\chi^{2}(2)}=\frac{\text { Area }}{}=15.87 ; p=0.000$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Urban	106 (21.9\%)	180 (37.2\%)	198 (40.9\%)	$\begin{gathered} \mathrm{n}=484 \\ 100 \% \end{gathered}$
Rural	134 (28.6\%)	199 (42.5\%)	135 (28.8\%)	$\begin{gathered} \mathrm{n}=468 \\ 100 \% \end{gathered}$
$\overline{\chi^{2}(4)}=7.19 ; p=0.126$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Western	59 (30.4\%)	66 (34\%)	69 (35.6\%)	$\begin{gathered} \mathrm{n}=194 \\ 100 \% \end{gathered}$
Central	54 (28.1\%)	76 (39.6\%)	62 (32.3\%)	$\begin{gathered} \mathrm{n}=192 \\ 100 \% \end{gathered}$
Eastern	127 (22.4\%)	237 (41.9\%)	202 (35.7\%)	$\begin{gathered} n=566 \\ 100 \% \end{gathered}$

Of the four demographic variables, only area was significantly related to respondents' perception of which speaker was friendlier.

More Friendly by Area

Forty one per cent of urban participants stated that they believed neither speaker would be friendlier. This was more than 12% higher than rural residents who were of this opinion. This relationship was found to be weak $(\mathrm{C}=0.128)$.

Table 14: Has more Money by Gender, Age, Area \& Region				
Gender	Which speaker has more Money			TOTAL
	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	
Male	201 (43.7\%)	46 (10\%)	213 (46.3\%)	$\begin{gathered} \mathrm{n}=460 \\ 100 \% \end{gathered}$
Female	189 (45.8\%)	31 (7.5\%)	193 (46.7\%)	$\begin{gathered} \mathrm{n}=413 \\ 100 \% \end{gathered}$
$\begin{gathered} \text { Age Groups } \\ \chi^{2}(4)=15.88 ; p=0.003 \end{gathered}$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
18-30yrs	124 (40.4\%)	24 (7.8\%)	159 (51.8\%)	$\begin{gathered} \mathrm{n}=307 \\ 100 \% \end{gathered}$
31-50yrs	116 (40.8\%)	25 (8.8\%)	143 (50.4\%)	$\begin{gathered} \mathrm{n}=284 \\ 100 \% \end{gathered}$
51-80+yrs	150 (53.2\%)	28 (9.9\%)	104 (36.9\%)	$\begin{gathered} n=282 \\ 100 \% \end{gathered}$
$\overline{\chi^{2}(2)}=\frac{\text { Area }}{}=-$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Urban	194 (43.5\%)	35 (7.8\%)	217 (48.7\%)	$\begin{gathered} \mathrm{n}=446 \\ 100 \% \end{gathered}$
Rural	196 (45.9\%)	42 (9.8\%)	189 (44.3\%)	$\begin{gathered} n=427 \\ 100 \% \end{gathered}$
$\begin{aligned} & \bar{Z}=-\frac{\text { Region }}{\chi^{2}(4)}=5.21 ; p=0.266 \end{aligned}$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Western	89 (49.2\%)	14 (7.7\%)	78 (43.1\%)	$\begin{gathered} \mathrm{n}=181 \\ 100 \% \end{gathered}$
Central	86 (49.1\%)	16 (9.1\%)	73 (41.7\%)	$\begin{gathered} \mathrm{n}=175 \\ 100 \% \end{gathered}$
Eastern	215 (41.6\%)	47 (9.1\%)	255 (49.3\%)	$\begin{gathered} \mathrm{n}=517 \\ 100 \% \end{gathered}$

More Money by Age

Only age was significantly related to the speaker respondents thought had more money. The majority of the 51year and older group felt that the speaker of English would have more money (53.2\%), this compares with 40.4% of the 18 -30year group and 40.8% of the 31-50year group. The majority of the two younger age groups believed that neither speaker would have more money (51.8% and 50.4%). Only 36.9% of respondents from the oldest age group felt that neither the Patwa nor the English speaker was more likely to have more money.

The contingency coefficient of 0.134 , showed that this was a fairly weak relationship.

Gender	Which speaker is more Helpful			TOTAL
	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	
Male	140 (29.4\%)	165 (34.7\%)	171 (35.9\%)	$\begin{gathered} \mathrm{n}=476 \\ 100 \% \end{gathered}$
Female	152 (32.8\%)	135 (29.1\%)	177 (38.1\%)	$\begin{gathered} \mathrm{n}=464 \\ 100 \% \end{gathered}$
$\begin{aligned} & \text { Age Groups } \\ & \chi^{2}(4)=12.68 ; p=0.013 \end{aligned}$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
18-30yrs	84 (26.3\%)	96 (30.1\%)	139 (43.6\%)	$\begin{gathered} \mathrm{n}=319 \\ 100 \% \end{gathered}$
31-50yrs	101 (32.5\%)	95 (30.5\%)	115 (37\%)	$\begin{gathered} \mathrm{n}=311 \\ 100 \% \end{gathered}$
51-80+yrs	107 (34.5\%)	109 (35.2\%)	94 (30.3\%)	$\begin{gathered} \mathrm{n}=310 \\ 100 \% \\ \hline \end{gathered}$
$\overline{\chi^{2}(2)}=8.31 ; p=0.016$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Urban	132 (27.4\%)	152 (31.6\%)	197 (41\%)	$\begin{gathered} \mathrm{n}=481 \\ 100 \% \end{gathered}$
Rural	160 (34.9\%)	148 (32.2\%)	151 (32.9\%)	$\begin{gathered} \mathrm{n}=348 \\ 100 \% \end{gathered}$
$\overline{\chi^{2}(4)}=6.66 ; p=0.155$	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	TOTAL
Western	68 (36\%)	57 (30.2\%)	64 (33.9\%)	$\begin{gathered} \mathrm{n}=189 \\ 100 \% \end{gathered}$
Central	67 (35.6\%)	56 (29.8\%)	65 (34.6\%)	$\begin{gathered} \mathrm{n}=188 \\ 100 \% \end{gathered}$
Eastern	157 (27.9\%)	187 (33.2\%)	219 (38.9\%)	$\begin{gathered} \mathrm{n}=563 \\ 100 \% \end{gathered}$

In terms of helpfulness, gender and region had no significant impact on people's view of Patwa and English speakers. Of note however, is that 36% and 35.6% of respondents from western and central regions respectively, felt that the English speaker would be most helpful, compared to 27.9% of respondents from eastern regions.

More Helpful by Age

The crosstabulation of age and helpfulness showed that the youngest age group was most likely to think that neither of the two speakers would be more helpful. Approximately 44% of the 18-30year age group felt this way compared to 37% of the $31-50$ year olds and 30.3% of the $51-80 y e a r$ olds. The youngest age group at 26.3% was also the least likely to think that the English speaker would be more helpful when compared to the 31-50year olds (32.5%) and the 51 year and older group (34.5\%). The relationship between age and perceptions of helpfulness was a weak one $(\mathrm{C}=0.115)$.

More Helpful by Area

There was a significant relationship between helpfulness and area. Forty one per cent of urban participants indicated that they believed neither of the two speakers would be more helpful. This was just under 9% higher than the percentage of rural participants that thought this. Rural individuals were somewhat more likely to state that the English speaker would be more helpful than those individuals from urban areas (34.9\% versus $27.4 \%)$. The contingency coefficient of 0.094 showed this to be a very weak relationship.

E. Education

The fifth subsection of the questionnaire had to do with Jamaican's impressions of the use of Patwa in educational institutions.

Table 16: Which school would be better for the Jamaican Child (N=1,000)	
	Frequency (\%)
The English Only School	288 (28.9\%)
The English and Patwa School	708 (71.1\%)

A frequency table of the question "Which school do you think would be better for a Jamaican child" showed that the overwhelming majority (71.1\%) of the sample thought that a school where children were taught to read and write in English and Patwa would be better than an English only school.

Gender	Type of School		TOTAL
	English Only Count(\%)	English \& Patwa Count(\%)	
Male	133 (26.6\%)	367 (73.4\%)	$\begin{gathered} \hline n=288 \\ 100 \% \end{gathered}$
Female	155 (31.3\%)	341 (68.8\%)	$\begin{gathered} \mathrm{n}=496 \\ 100 \% \end{gathered}$
$\begin{aligned} & \chi_{-}=\text {Age Groups }=\ldots \\ & \chi^{2}(2)=15.76 ; p=0.000 \end{aligned}$	English Only Count(\%)	English \& Patwa Count(\%)	TOTAL
18-30yrs	83 (24.9\%)	250 (75.1\%)	$\begin{gathered} \mathrm{n}=333 \\ 100 \% \\ \hline \end{gathered}$
31-50yrs	83 (24.9\%)	250 (75.1\%)	$\begin{gathered} \mathrm{n}=333 \\ 100 \% \end{gathered}$
51-80+yrs	122 (37\%)	208 (63\%)	$\begin{gathered} \mathrm{n}=330 \\ 100 \% \\ \hline \end{gathered}$
$\begin{aligned} & \text { _ }-\quad \text { Area } \\ & \chi^{2}(1)=3.80 ; p=0.051 \end{aligned}$	English Only Count(\%)	English \& Patwa Count(\%)	TOTAL
Urban	164 (31.6\%)	355 (68.4\%)	$\begin{gathered} \mathrm{n}=519 \\ 100 \% \end{gathered}$
Rural	124 (26\%)	353 (74\%)	$\begin{gathered} \hline n=477 \\ 100 \% \end{gathered}$
$\begin{aligned} & -\quad \text { Region }=--=1.62 ; p=0.445 \\ & \chi^{2}(2)=1.62 ; \end{aligned}$	English Only Count(\%)	English \& Patwa Count(\%)	TOTAL
Western	63 (31.5\%)	137 (68.5\%)	$\begin{gathered} n=200 \\ 100 \% \end{gathered}$
Central	51 (25.8\%)	147 (74.2\%)	$\begin{gathered} \mathrm{n}=198 \\ 100 \% \end{gathered}$
Eastern	174 (29.1\%)	424 (70.9\%)	$\begin{gathered} n=598 \\ 100 \% \end{gathered}$

Of the demographic variables, only age was significantly related to type of school. While there were no differences between the two younger age groups, the 51 and older group was far less likely than both of the younger groups to have a favourable view of the English and Patwa school. While 63\% of this group felt this school would be better, this
was well below the 75.1% of the other two age groups that held this view. This relationship turned out to be weak.

F. Writing in a Standard Form

The final section of the survey had to do with general views of Patwa as a language.

Table 18: Sample Distribution of Writing Variables (N=1,000)		
Is Patwa a Language?	Frequency	$\mathbf{(\%)}$
Yes	795	79.5%
No	205	20.5%
Should Parliament make Patwa an Official Language		
Yes	684	68.5%
No	264	26.5%
Don't Know	50	5%
Would you want to see Patwa written on:	Frequency	$\mathbf{(\%)}$
Road Signs	489	48.9%
School Books	573	57.3%
Medicine Bottles	451	45.1%
Government Forms	438	43.8%
Weed Spray	461	46.1%

Almost 80% of the sample thought Patwa was a language and a further 68.5% felt that parliament should make it an official language. In terms of where respondents would want to see Patwa written, they were most in favour of school books as 57.3% of them said they would want to see it written there. Forty nine per cent of participants said they would like to see Patwa written on road signs.

Gender	Is Patwa a Language		TOTAL
	$\begin{gathered} \text { Yes } \\ \text { Count(\%) } \end{gathered}$	No Count(\%)	
Male	405 (80.8\%)	96 (19.2\%)	$\begin{gathered} \hline \mathbf{n}=501 \\ 100 \% \end{gathered}$
Female	390 (78.2\%)	109 (21.8\%)	$\begin{gathered} \mathrm{n}=499 \\ 100 \% \end{gathered}$
$\begin{aligned} & \text { Age Groups }= \\ & \chi^{2}(2)=12.13 ; p=0.002 \end{aligned}$	$\begin{gathered} \text { Yes } \\ \text { Count(\%) } \end{gathered}$	No Count(\%)	TOTAL
18-30yrs	276 (82.6\%)	58 (17.4\%)	$\begin{gathered} \hline n=334 \\ 100 \% \end{gathered}$
31-50yrs	276 (82.6\%)	58 (17.4\%)	$\begin{gathered} n=334 \\ 100 \% \end{gathered}$
51-80+yrs	243 (73.2\%)	89 (26.8\%)	$\begin{gathered} n=205 \\ 100 \% \end{gathered}$
$\begin{aligned} & -\quad \text { Area }-=-1 \\ & \chi^{2}(1)=0.01 ; p=0.951 \end{aligned}$	$\begin{gathered} \text { Yes } \\ \text { Count(\%) } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { Count(\%) } \end{gathered}$	TOTAL
Urban	413 (79.6\%)	106 (20.4\%)	$\begin{gathered} \mathrm{n}=519 \\ 100 \% \\ \hline \end{gathered}$
Rural	382 (79.4\%)	99 (20.6\%)	$\begin{gathered} \mathrm{n}=481 \\ 100 \% \end{gathered}$
$\begin{aligned} & -\quad \text { Region }-=- \\ & \chi^{2}(2)=2.62 ; p=0.270 \end{aligned}$	$\begin{gathered} \text { Yes } \\ \text { Count(\%) } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { Count(\%) } \end{gathered}$	TOTAL
Western	153 (76.5\%)	47 (23.5\%)	$\begin{gathered} n=200 \\ 100 \% \end{gathered}$
Central	155 (77.5\%)	45 (22.5\%)	$\begin{gathered} \mathrm{n}=200 \\ 100 \% \\ \hline \end{gathered}$
Eastern	487 (81.2\%)	113 (18.8\%)	$\begin{gathered} \mathrm{n}=600 \\ 100 \% \\ \hline \end{gathered}$

Only age was significantly related to people's view of whether or not Patwa is a language. There was no difference between the two youngest age groups, 82.6% of both these groups felt that Patwa is a language. The oldest age group of 51years and older at
only 73.2% was less likely to think Patwa is a language. This relationship was weak ($\mathrm{C}=$ $0.109)$.

Gender	Should Patwa be an Official Language			TOTAL
	$\begin{gathered} \text { Yes } \\ \text { Count(\%) } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { Count(\%) } \end{gathered}$	Don’t Know Count(\%)	
Male	358 (71.7\%)	123 (24.6\%)	18 (3.6\%)	$\begin{gathered} \mathrm{n}=499 \\ 100 \% \end{gathered}$
Female	326 (65.3\%)	141 (28.3\%)	32 (6.45)	$\begin{gathered} n=499 \\ 100 \% \end{gathered}$
$\begin{gathered} \text { Age Groups } \\ \chi^{2}(4)=4.42 ; p=0.352 \end{gathered}$	$\begin{gathered} \text { Yes } \\ \text { Count(\%) } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { Count(\%) } \end{gathered}$	Don’t Know Count(\%)	TOTAL
18-30yrs	240 (72.1\%)	77 (23.1\%)	16 (4.8\%)	$\begin{gathered} \hline \mathrm{n}=333 \\ 100 \% \end{gathered}$
31-50yrs	229 (68.8\%)	89 (26.7\%)	15 (4.5\%)	$\begin{gathered} n=333 \\ 100 \% \end{gathered}$
51-80+yrs	215 (64.8\%)	98 (29.5\%)	19 (5.7\%)	$\begin{aligned} & n=50 \\ & 100 \% \end{aligned}$
$\begin{aligned} & -\quad-\frac{\text { Area }}{}=- \\ & \chi^{2}(2)=6.57 ; p=0.037 \end{aligned}$	$\begin{gathered} \text { Yes } \\ \text { Count(\%) } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { Count(\%) } \end{gathered}$	Don't Know Count(\%)	TOTAL
Urban	336 (65\%)	154 (29.8\%)	27 (5.2\%)	$\begin{gathered} \mathrm{n}=517 \\ 100 \% \end{gathered}$
Rural	348 (72.3\%)	110 (22.9\%)	23 (4.8\%)	$\begin{gathered} \mathrm{n}=481 \\ 100 \% \end{gathered}$
$\begin{aligned} & -\quad \text { Region } \\ & \chi^{2}(4)=2.67 ; p=0.615 \end{aligned}$	$\begin{gathered} \text { Yes } \\ \text { Count(\%) } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { Count(\%) } \end{gathered}$	Don't Know Count(\%)	TOTAL
Western	127 (64.1)	60 (30.3\%)	11 (5.6\%)	$\begin{gathered} \mathrm{n}=198 \\ 100 \% \\ \hline \end{gathered}$
Central	143 (71.5\%)	48 (24\%)	9 (4.5\%)	$\begin{gathered} n=200 \\ 100 \% \\ \hline \end{gathered}$
Eastern	414 (69\%)	156 (26\%)	30 (5\%)	$\begin{gathered} \mathrm{n}=600 \\ 100 \% \\ \hline \end{gathered}$

Although both relationships were weak both gender and area were significantly related to respondent's opinion on making Patwa an official language. Males were more likely than females to think Patwa should be an official language (71.7\% compared to 65.3\%).

Individuals from rural areas were more likely than urban individuals to think that Patwa should be made an official language (72.3% versus 65%).

G. Occupation

Though not part of the overall sample structure, respondents were also asked to state there occupation.

Table 21: Occupation (N=1,000)	
	Frequency (\%)
Student	42 (4.2\%)
Unskilled/Housewife	182 (18.2\%)
Clerical/Sales/Services	254 (25.4\%)
Self-employed/Professional	137 (13.7\%)
Retired	35 (3.5\%)
Farmer	61 (6.1\%)
Skilled/Craftsman	177 (17.7\%)
Unemployed	45 (4.5\%)
Service-professional	67 (6.7\%)

Clerical/Sales/Service workers at 25.4% represented the most common occupational group in the sample. Additionally, unskilled workers/housewives, skilled workers/craftsmen and self-employed/professionals all accounted for double figure percentages of the sample. Of note is that only 4.5% of the sample was unemployed which is below Jamaica's national average.

The occupation variable was crosstabulated with the various language variables, however the retired and student categories were omitted from these crosstabulations as both groups were relatively small and were found to be highly correlated with the age ranges that were examined earlier. Ninety five per cent of students were 18 -30yrs old and 97.1% of retired respondents were in the 51 and older age group. The farmer group was combined with skilled/craftsman and the service professional group was combined with the selfemployed group.

Occupation by Language Awareness

Occupation	Languages Spoken			TOTAL
	English Count(\%)	Patwa Count(\%)	$\begin{gathered} \text { Both } \\ \text { Count(\%) } \end{gathered}$	
Unskilled/Housewife	19 (10.5\%)	35 (19.3\%)	127 (70.2\%)	$\begin{gathered} \hline n=181 \\ 100 \% \\ \hline \end{gathered}$
Clerical/Sales/Services	17 (6.7\%)	19 (7.5\%)	217 (85.8\%)	$\begin{gathered} \mathrm{n}=253 \\ 100 \% \end{gathered}$
Self-Employed/ Professional	29 (14.2\%)	8 (3.9\%)	167 (81.9\%)	$\begin{gathered} n=204 \\ 100 \% \end{gathered}$
Skilled/Craftsman/ Farmer	29 (12.2\%)	36 (15.1\%)	173 (72.7\%)	$\begin{gathered} n=238 \\ 100 \% \\ \hline \end{gathered}$
Unemployed	6 (13.3\%)	2 (4.4\%)	37 (82.2\%)	$\begin{aligned} & n=45 \\ & 100 \% \end{aligned}$

Chi-square analysis found a significant relationship between occupation and the languages spoken by the sample. Respondents in the unskilled/housewife group were the most likely of the occupations to speak Patwa only(19.3% versus $7.5 \%, 3.9 \%, 15.1 \%$, 4.4\%). Unemployed individuals (13.3\%) and Self-Employed/Professionals (14.2) were the groups most likely to speak English only.

The contingency coefficient found this to be a fairly weak/moderate relationship ($\mathrm{C}=$ 0.206).

Table 23: To whom do you speak by Occupation

Occupation	${ }^{1}$ English				${ }^{2}$ Patwa			
$\begin{aligned} & { }^{1} \chi^{2}(12)=48.93 ; p=0.000 \\ & { }^{2} \chi^{2}(12)=22.75 ; p=0.030 \end{aligned}$	Family Count(\%)	Strangers Count(\%)	Everyone Count(\%)	No One Count(\%)	Family Count(\%)	Strangers Count(\%)	Everyone Count(\%)	No One Count (\%)
Unskilled/Housewife	17 (9.3\%)	91(50\%)	47 (25.8\%)	27 (14.8\%)	104 (57.1)	7 (3.8\%)	60 (33\%)	11 (6\%)
Clerical/Sales/Services	16 (6.3\%)	169 (66.5\%)	57 (22.4\%)	12 (4.7\%)	177 (69.7\%)	9 (3.5\%)	64 (25.2\%)	4 (1.6\%)
Self-Employed/ Professional	13 (6.4\%)	124 (60.8\%)	62 (30.4\%)	5 (2.5\%)	137 (67.2\%)	6 (2.9\%)	48 (23.5\%)	13 (6.4\%)
Skilled/Craftsman/ Farmer	22 (9.2\%)	117 (49.2\%)	63 (26.5\%)	36 (15.1\%)	132 (55.5\%)	8 (3.4\%)	82 (34.5\%)	16 (6.7\%)
Unemployed	4 (8.9\%)	27 (60\%)	13 (28.9\%)	1 (2.2\%)	29 (64.4\%)	0 (0\%)	13 (28.9\%)	3 (6.7\%)

Table 22 shows the relationships between occupation and with whom individuals spoke English and Patwa. While chi-square analysis showed that both relationships were significant, the magnitude of the relationship between occupation and with whom respondents spoke English ($\mathrm{C}=0.224$) was stronger than the relationship between occupation and with whom respondents spoke Patwa (C $=0.155)$.

With the exception of skilled/craftsmen/farmers, the majority of all occupations groups stated that they spoke English with strangers. Skilled/Craftsmen/Farmers and Unskilled/Housewives at 15.1% and 14.8% respectively were the most likely groups to speak English to no one. Conversely, unemployed individuals and self-employed/professionals were the most likely groups to speak English with everyone (28.9% and 30.4% respectively).

With regards to whom respondents spoke Patwa to, the majority of all occupations said they were most likely to speak Patwa with family. Skilled/craftsmen/farmers were the most likely group to speak Patwa with everyone (34.5\%) this group was followed closely by the unskilled/housewives group at 33%.

Government/Public Use by Occupation

	If Minister made speech in Patwa			TOTAL
	Communicate better with public Count(\%)	Talk down to the masses Count(\%)	None Count(\%)	
Unskilled/Housewife	127 (69.8\%)	43 (23.6\%)	12 (6.6\%)	$\begin{array}{\|c} \hline n=182 \\ 100 \% \end{array}$
Clerical/Sales/Services	163 (64.2\%)	60 (23.6\%)	31 (12.2\%)	$\begin{gathered} \hline n=254 \\ 100 \% \end{gathered}$
Self-Employed/ Professional	131 (64.5\%)	44 (21.7\%)	28 (13.8\%)	$\begin{gathered} n=203 \\ 100 \% \end{gathered}$
Skilled/Craftsman/ Farmer	167 (70.8\%)	36 (15.3\%)	33 (14\%)	$\begin{gathered} n=236 \\ 100 \% \end{gathered}$
Unemployed	33 (73.3\%)	10 (22.2\%)	2 (4.4\%)	$\begin{aligned} & n=45 \\ & 100 \% \end{aligned}$

Chi-square analysis found no significant relationship between occupation and attitude towards the use of Patwa by a Minister in a speech in parliament. The majority of all occupation groups felt that a Minister, in doing this, would be "trying to communicate better with the public".

Language Use and Social Stereotypes by Occupation

Occupation	Which speaker is more Intelligent			TOTAL
	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	
Unskilled/Housewife	123 (68\%)	26 (14.4\%)	32 (17.7\%)	$\begin{gathered} n=181 \\ 100 \% \end{gathered}$
Clerical/Sales/Services	139 (57.9\%)	8 (3.3\%)	93 (38.8\%)	$\begin{gathered} \hline n=240 \\ 100 \% \end{gathered}$
Self-Employed/ Professional	91 (49.7\%)	8 (4.4\%)	84 (45.9\%)	$\begin{gathered} \mathrm{n}=183 \\ 100 \% \\ \hline \end{gathered}$
Skilled/Craftsman/ Farmer	125 (53.9\%)	21 (9.1\%)	86 (37.1\%)	$\begin{gathered} n=232 \\ 100 \% \\ \hline \end{gathered}$
Unemployed	30 (75\%)	4 (10\%)	6 (15\%)	$\begin{aligned} & n=40 \\ & 100 \% \end{aligned}$

There was a significant relationship between occupation types and the speaker that respondents felt would be more intelligent. At 75\%, unemployed individuals were the most likely group to think that the English speaker would be more intelligent. Fifteen per cent of this group felt that neither speaker would be more intelligent which, along with 17.7% of the unskilled/housewives group, represented significantly lower percentages when compared to the other occupation groups who thought neither speaker was more intelligent (clerical/sales/services 38.8\%, self-employed/professionals 45.9\% and skilled/craftsmen/farmers 37.1\%).

The contingency coefficient of 0.245 found this to be a moderate strength relationship.

Occupation	Which speaker is more Honest			TOTAL
	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	
Unskilled/Housewife	73 (42.9\%)	47 (27.6\%)	50 (29.4\%)	$\begin{array}{\|c} \hline n=170 \\ 100 \% \end{array}$
Clerical/Sales/Services	64 (28.1\%)	73 (32\%)	91 (39.9\%)	$\begin{array}{\|c} \hline n=228 \\ 100 \% \end{array}$
Self-Employed/ Professional	43 (24.3\%)	57 (32.2\%)	77 (43.5\%)	$\begin{gathered} \hline n=177 \\ 100 \% \\ \hline \end{gathered}$
Skilled/Craftsman/ Farmer	58 (25.7\%)	71 (31.4\%)	97 (42.9\%)	$\begin{gathered} \hline n=226 \\ 100 \% \end{gathered}$
Unemployed	18 (46.2\%)	12 (30.8\%)	9 (23.1\%)	$\begin{aligned} & \mathrm{n}=39 \\ & 100 \% \end{aligned}$

A chi-square test of the relationship between occupation and which speaker respondents thought was more honest, found it to be significant. Unskilled/housewives (42.9\%) and unemployed individuals (46.2\%) were the most likely groups to think that the English speaker would be more educated. There were only minimal differences in percentages of the various occupations who thought that the Patwa speaker was more honest.

This was a weak relationship ($\mathrm{C}=0.171$).

Occupation	Which speaker is more Educated			TOTAL
	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	
Unskilled/Housewife	120 (67.4\%)	19 (10.7\%)	39 (21.9\%)	$\begin{gathered} \hline n=178 \\ 100 \% \\ \hline \end{gathered}$
Clerical/Sales/Services	138 (57\%)	13 (5.4\%)	91 (37.6\%)	$\begin{gathered} \hline n=242 \\ 100 \% \end{gathered}$
Self-Employed/ Professional	112 (58.6\%)	7 (3.7\%)	72 (37.7\%)	$\begin{array}{\|c\|} \hline n=191 \\ 100 \% \end{array}$
Skilled/Craftsman/ Farmer	143 (61.9\%)	14 (6.1\%)	74 (32\%)	$\begin{gathered} \hline n=231 \\ 100 \% \\ \hline \end{gathered}$
Unemployed	30 (69.8\%)	4 (9.3\%)	9 (20.9\%)	$\begin{aligned} & n=43 \\ & 100 \% \end{aligned}$

It was found that occupation was significantly related to whom participants thought would be more educated. As was the case with stereotypes about intelligence and honesty, unemployed individuals (69.8\%) and unskilled/housewives were the most likely of the occupation groups to think that the English speaker would be more educated. Also in keeping with previously identified trends, these two groups were the least likely to think that neither speaker would be more educated. The relationship between occupation and stereotypes about education was weak ($\mathrm{C}=0.157$).

Occupation	Which speaker is more Friendly			TOTAL
	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	
Unskilled/Housewife	62 (35.8\%)	62 (35.8\%)	49 (28.3\%)	$\begin{gathered} \hline n=173 \\ 100 \% \\ \hline \end{gathered}$
Clerical/Sales/Services	48 (19.8\%)	104 (43\%)	90 (37.2\%)	$\begin{gathered} \hline n=242 \\ 100 \% \end{gathered}$
Self-Employed/ Professional	43 (22.6\%)	71 (37.4\%)	76 (40\%)	$\begin{gathered} \hline n=190 \\ 100 \% \end{gathered}$
Skilled/Craftsman/ Farmer	49 (21.2\%)	100 (43.3\%)	82 (35.5\%)	$\begin{gathered} n=231 \\ 100 \% \\ \hline \end{gathered}$
Unemployed	17 (38.6\%)	19 (43.2\%)	8 (18.2\%)	$\begin{aligned} & n=44 \\ & 100 \% \end{aligned}$

There was a significant relationship between occupation and which speaker the sample thought was more friendly. Again those respondents who were unemployed and those who were unskilled/housewives were the most likely to think that the English speaker would be friendlier (38.6% and 35.8% respectively). The unemployed group at 18.2% was also far less likely than the other occupation groups to think that neither speaker would be friendlier.

The contingency coefficient of 0.168 found this to be a weak relationship.

Occupation	Which speaker has more Money			TOTAL
	English Count(\%)	Patwa Count(\%)	Neither Count(\%)	
Unskilled/Housewife	67 (43.8\%)	18 (11.8\%)	68 (44.4\%)	$\begin{array}{\|c} \hline n=153 \\ 100 \% \end{array}$
Clerical/Sales/Services	94 (41.6\%)	18 (8\%)	114 (50.4\%)	$\begin{gathered} \hline n=226 \\ 100 \% \end{gathered}$
Self-Employed/ Professional	78 (45.9\%)	11 (6.5\%)	81 (47.6\%)	$\begin{gathered} \hline n=170 \\ 100 \% \\ \hline \end{gathered}$
Skilled/Craftsman/ Farmer	97 (44.7\%)	19 (8.8\%)	101 (46.5\%)	$\begin{gathered} \mathrm{n}=217 \\ 100 \% \end{gathered}$
Unemployed	23 (57.5\%)	7 (17.5\%)	10 (25\%)	$\begin{aligned} & n=40 \\ & 100 \% \end{aligned}$

Chi-square analysis showed that there was no significant relationship between occupation and view of which speaker would have more money.

Occupation	Which speaker has more Helpful			TOTAL
	$\begin{gathered} \text { English } \\ \text { Count(\%) } \end{gathered}$	Patwa Count(\%)	Neither Count(\%)	
Unskilled/Housewife	71 (40.6\%)	64 (36.6\%)	40 (22.9\%)	$\begin{gathered} \hline n=175 \\ 100 \% \\ \hline \end{gathered}$
Clerical/Sales/Services	66 (27.6\%)	73 (30.5\%)	100 (41.8\%)	$\begin{gathered} \hline n=239 \\ 100 \% \end{gathered}$
Self-Employed/ Professional	42 (22.8\%)	58 (31.5\%)	84 (45.7\%)	$\begin{gathered} \hline n=184 \\ 100 \% \\ \hline \end{gathered}$
Skilled/Craftsman/ Farmer	78 (34.1\%)	68 (29.7\%)	83 (36.2\%)	$\begin{gathered} n=229 \\ 100 \% \\ \hline \end{gathered}$
Unemployed	15 (37.5\%)	14 (35\%)	11 (27.5\%)	$\begin{aligned} & n=40 \\ & 100 \% \end{aligned}$

Clerical/sales/service workers, along with self-employed/professionals, were the least likely groups to think that the English speaker would be more helpful (27.6\% and 22.8\% respectively). These groups were the most likely to state that the neither speaker would be more intelligent (clerical/sales/services 41.8\% and self-employed/professionals 45.7\%).

The chi-square test found this relationship to be significant and the contingency coefficient found that it was fairly weak $(\mathrm{C}=0.179)$.

Education by Occupation

Occupation	Type of School		TOTAL
	English Only Count(\%)	English \& Patwa Count(\%)	
Unskilled/Housewife	58 (32.2\%)	122 (67.8\%)	$\begin{gathered} \hline n=180 \\ 100 \% \\ \hline \end{gathered}$
Clerical/Sales/Services	59 (23.2\%)	195 (76.8\%)	$\begin{gathered} \hline n=254 \\ 100 \% \end{gathered}$
Self-Employed/ Professional	72 (35.3\%)	132(64.7\%)	$\begin{gathered} n=204 \\ 100 \% \end{gathered}$
Skilled/Craftsman/ Farmer	58 (24.5\%)	179 (75.5\%)	$\begin{gathered} n=237 \\ 100 \% \end{gathered}$
Unemployed	16 (36.4\%)	28 (63.6\%)	$\begin{aligned} & n=44 \\ & 100 \% \end{aligned}$

A crosstabulation was also generated for the relationship between occupation and the type of school that respondents thought would be better for Jamaican children. Clerical/sales/service workers (76.8\%) and skilled/craftsmen/farmers (75.5\%) were the most likely groups to think that the English and Patwa school would be better for Jamaican children.

This relationship, while statistically significant was found to be weak ($\mathrm{C}=0.166$).

Writing in a Standard Form by Occupation

Occupation	Is Patwa a Language		TOTAL
	$\begin{gathered} \text { Yes } \\ \text { Count(\%) } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { Count(\%) } \end{gathered}$	
Unskilled/Housewife	141 (77.5\%)	41 (22.5\%)	$\begin{array}{\|c} \hline n=182 \\ 100 \% \end{array}$
Clerical/Sales/Services	202 (79.5\%)	52 (20.5\%)	$\begin{gathered} \hline n=254 \\ 100 \% \end{gathered}$
Self-Employed/ Professional	168 (82.4\%)	36 (17.6\%)	$\begin{gathered} \hline n=204 \\ 100 \% \\ \hline \end{gathered}$
Skilled/Craftsman/ Farmer	200 (84\%)	38 (16\%)	$\begin{gathered} \hline n=238 \\ 100 \% \\ \hline \end{gathered}$
Unemployed	31 (68.9\%)	14 (31.1\%)	$\begin{aligned} & n=45 \\ & 100 \% \end{aligned}$

There was no significant relationship between occupation and view of Patwa as a language. The majority of the sample, irrespective of occupational category, felt that Patwa was a language. It must be noted that unemployed persons at 31.1% were the most likely group to disagree that Patwa was a language.

Occupation	Should Patwa be an Official Language			TOTAL
	$\begin{gathered} \text { Yes } \\ \text { Count(\%) } \end{gathered}$	$\begin{gathered} \text { No } \\ \text { Count(\%) } \end{gathered}$	Don't Know Count(\%)	
Unskilled/Housewife	127 (69.8\%)	45 (24.7\%)	10 (5.5\%)	$\begin{gathered} \hline n=182 \\ 100 \% \end{gathered}$
Clerical/Sales/Services	173 (68.4\%)	69 (27.3\%)	11 (4.3\%)	$\begin{gathered} \hline n=253 \\ 100 \% \end{gathered}$
Self-Employed/ Professional	131 (64.2\%)	59 (28.9\%)	14 (6.9\%)	$\begin{gathered} n=204 \\ 100 \% \\ \hline \end{gathered}$
Skilled/Craftsman/ Farmer	178 (74.8\%)	54 (22.7\%)	6 (2.5\%)	$\begin{gathered} n=238 \\ 100 \% \\ \hline \end{gathered}$
Unemployed	32 (71.1\%)	11 (24.4\%)	2 (4.4\%)	$\begin{aligned} & n=45 \\ & 100 \% \end{aligned}$

There was no significant relationship between occupation and attitude towards making Patwa an official language. Again the majority of all occupational categories thought that Patwa should be an official language.

WE PIIPL LIV

1. We yu liv:	Ou lang:			
2. We yu baan:				
3. Ou uol yu bi:	$18-30$ ierz []	$31-50$ ierz []	$51-80+$ ierz []	
4. Man/Uman:	Man []	Uman []		
5. Wa kain a work yu du:				

WE PIIPL NUO BOUT LANGGWIJ

6. We kain a langgwij yu taak?	a) Ingglish []	b) Patwa []	c) Sopm els []

7. Uu yu taak tu ina
a) Patwa
b) Ingglish

GOVAMENT / POBLIK TAAK

8. Ef di Prime Minister ar di Minister of Finance mek im spiich op a Gordon House ina Patwa wa mek im du dat :
a) fi mek di public andastan im beta?
b) fi taak dong tu di piipl dem?
c) sopm els / wat els
IF 8c) Tel wi bout dat:

OU YU LUK PAN PIIPL FI OU DEM TAAK
9. Wen yu ier smadi a taak Patwa an smadi els a taak Ingglish, wich wan yu tink:

Patwa		Ingglish
a) av muor brienz		
b) muor anis		
c) muor edikietid		
d) yu kyan taak tu muo		
e) av muor moni		
f) muor elp yu if yu ina chrobl		

EDIKIESHAN
10. Dem av tuu kain a skuul ina Jamieka. Ina wan kain a skuul, di pikni dem lorn fi riid an rait onggl ina Ingglish. Ina di neks kain a skuul, di pikni dem lorn fi riid an rait ina Ingglish an ina Patwa. Wich kain a skuul yu tink wuda beta fi wan Jamiekan pikni?
a) Di skuul wid onggl Ingglish []
b) Di skuul wid Ingglish an Patwa []

OU FI RAIT PATWA / JAMIEKAN

11. Ef dem did av wan gud wie fi rait Patwa. Yu wuda laik si Patwa rait pan wa?
(Chuuz eni amount a dem) :
a) ruod sain
b) skuul buk
c) pil bakl
d) govament faam
e) faam sprie
12. Wan langgwij a sopm we yu kyan yuuz fi se eni ting yu waan se tu piipl. Yu tink se Patwa a wan langgwij?

Yes []	Nuo []	Tel wi bout dat

13. Yu tink se Govament shud a mek Patwa wan ofishal langgwig jos laik Ingglish?

YES [] \quad NUO [] \quad MI NO NUO []
14. FOR OFFICE USE ONLY: Region - Western [] Central [] Eastern []

Appendix

Frequency Tables of Demographic variables in Jamaica Language Attitude Survey

		Frequency	Percent	Valid Percent	Cumulative
Percent					
Valid	1 urban	519	51.9	51.9	51.9
	2 rural	481	48.1	48.1	100.0
	Total	1000	100.0	100.0	

region Region

					Cumulative Percent
Valid	1 Western	200	20.0	20.0	20.0
	2 Central	200	20.0	20.0	40.0
	3 Eastern	600	60.0	60.0	100.0
	Total	1000	100.0	100.0	

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid 1 18-30	334	33.4	33.4	33.4
$231-50$	334	33.4	33.4	66.8
3 51-80+ years	332	33.2	33.2	100.0
Total	1000	100.0	100.0	

sex Gender

					Cumulative Percent
Valid	1 Male	501	50.1	50.1	50.1
	2 Female	499	49.9	49.9	100.0
	Total	1000	100.0	100.0	

q5 Occupation

	Frequency	Percent	Valid Percent	Cumulative Percent
Valid 1 Student	42	4.2	4.2	4.2
2 Unskilled/Housewife	182	18.2	18.2	22.4
3 Clerical/Sales/Services	254	25.4	25.4	47.8
4				
Self-employed/ Professional	137	13.7	13.7	61.5
5 Retired	35	3.5	3.5	65.0
6 Farmer	61	6.1	6.1	71.1
7 Skilled/Craftsman	177	17.7	17.7	88.8
8 Unemployed	45	4.5	4.5	93.3
9 service-professional	67	6.7	6.7	100.0
Total	1000	100.0	100.0	

Frequency Tables of Language Variables

q6a What languages do you speak? (English)

					Cumulative Percent
Valid	Frequency	Percent	Valid Percent	89.3	89.3
	2 No	893	89.3	107	10.7
	Total	1000	100.0	10.7	100.0

q6b What languages do you speak? (Patwa)

					Cumulative Percent
Valid	Frequency	Pes	889	88.9	88.9

language What languages do you speak

					Cumulative Percent
Valid	1.00 English only	109	10.9	10.9	10.9
	2.00 Patwa only	105	10.5	10.5	21.4
	3.00 Both	784	78.4	78.6	100.0
	Total	998	99.8	100.0	
Missing	.00	2	.2		
Total		1000	100.0		

q7a To whom do you speak? (Patwa)

					Cumulative Percent
Valid	Frequency	Percent	Valid Percent	62.9	62.9
	2 Strangers \& Work	629	62.9	66.1	
3 everyone	32	3.2	3.2	94.6	
4 no one	285	28.5	28.5	100.0	
Total	54	5.4	5.4		

q7b To whom do you speak? (English)

				Cumulative Percent	
Valid	Frequency	Percent	Valid Percent	7.9	7.9
	2 Strangers \& Work	59	7.9	57.1	65.0
3 everyone	262	57.1	26.2	26.2	91.2
4 no one	88	8.8	8.8	100.0	
Total	1000	100.0	100.0		

q8 If Minister made a speech in Patwa would you think he is:

				Cumulative Percent	
Valid	1 Communicate				
	better with the public	676	67.6	67.8	67.8
	2 Talk down to the				
	masses	205	20.5	20.6	88.4
	P none	116	11.6	11.6	100.0
	Total	997	99.7	100.0	
Missing	3	2	.2		
	4	1	.1		
	Total	3	.3		
Total		1000	100.0		

rq9a Is more intelligent

					Cumulative Percent
Valid	1.00 Patwa	73	7.3	7.7	7.7
	2.00 English	550	55.0	57.8	65.4
	3.00 Both	329	32.9	34.6	100.0
	Total	952	95.2	100.0	
Missing	System	48	4.8		
Total		1000	100.0		

rq9b Is more honest

					Cumulative Percent
Valid	Frequency	Percent	Valid Percent	31.0	
	2.00 English	283	28.3	31.0	61.4
	3.00 Both	353	27.8	30.4	100.0
	Total	914	95.3	38.6	
Missing	System	86	8.6	100.0	
Total		1000	100.0		

rq9c is more educated

					Cumulative Percent
Valid	1.00 Patwa	Frequency	Percent	Valid Percent	59.2
	2.00 English	591	59.1	6.2	61.7
	3.00 Both	308	30.8	32.2	100.0
	Total	958	95.8	100.0	
Missing	System	42	4.2		
Total		1000	100.0		

rq9d Is more friendly

					Cumulative Percent
Valid	1.00 Patwa	379	37.9	39.8	39.8
	2.00 English	240	24.0	25.2	65.0
	3.00 Both	333	33.3	35.0	100.0
	Total	952	95.2	100.0	
Missing	System	48	4.8		
Total		1000	100.0		

rq9e Has more money

					Cumulative Percent
Valid	1.00 Patwa	Frequency	Percent	Valid Percent	87
	2.00 English	390	39.0	8.8	8.8
	3.00 Both	406	40.6	44.7	53.5
	Total	873	87.3	100.0	100.0
Missing	System	127	12.7		
Total		1000	100.0		

rq9f Is more helpful

					Cumulative Percent
Valid	Frequency	Percent	Valid Percent	31.9	
	2.00 English	300	30.0	31.9	63.0
	3.00 Both	348	29.2	31.1	100.0
	Total	940	94.8	37.0	
Missing	System	60	6.0	100.0	
Total		1000	100.0		

q10 Which school is better?

					Cumulative Percent
Valid	1 English school only	288	28.8	28.9	28.9
	2 English \& Patwa	708	70.8	71.1	100.0
	School	996	99.6	100.0	
	Total	1	.1		
Missing	5	1	.1		
	9	2	.2		
	System	4	.4		
	Total	1000	100.0		
Total					

q11a Road Signs

					Cumulative Percent
Valid	Frequency	Percent	Valid Percent	48.9	48.9
	2 No	511	48.9	51.1	51.1

q11b School Books

					Cumulative Percent
Valid	1 Yes	573	57.3	57.3	57.3
	2 No	427	42.7	42.7	100.0
	Total	1000	100.0	100.0	

q11c Medicine Bottles

					Cumulative Percent
Valid	Frequency	Percent	Valid Percent	45.1	45.1
	2 No	549	45.1	54.9	54.9

q11d Government forms

					Cumulative Percent
Valid	Frequency	Percent	Valid Percent	43.8	
	2 No	561	56.1	56.2	100.0
	Total	999	99.9	100.0	
Missing	System	1	.1		
Total		1000	100.0		

q11e Weed Spray

					Cumulative Percent
Valid	1 Yes	461	46.1	46.2	46.2
	2 No	536	53.6	53.8	100.0
	Total	997	99.7	100.0	
Missing	System	3	.3		
Total		1000	100.0		

q12 Is Patwa a Language

					Cumulative Percent
Valid	1 Yes	795	79.5	79.5	79.5
	2 No	205	20.5	20.5	100.0
	Total	1000	100.0	100.0	

q13 Should Patwa be an official language?

					Cumulative Percent
Valid	Frequency	Percent	Valid Percent	68.5	68.5
	2 No	684	68.4	26.5	95.0
	3 Don't Know	264	26.4	5.0	100.0
	Total	50	5.0	100.0	
Missing	System	998	99.8		
Total		2	.2		

Sample Structure

sex Gender * age Age Range * urbanru parish * region Region Crosstabulation

region Region urbanru parish				age Age Range			Total
				1 18-30	2 31-50	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \end{gathered}$	
1 Western	1 urban	sex Gender 1 Male	Count	17	17	17	51
			\% within age Age Range	50.0\%	50.0\%	51.5\%	50.5\%
		2 Female	Count	17	17	16	50
			\% within age Age Rang¢	50.0\%	50.0\%	48.5\%	49.5\%
		Total	Count	34	34	33	101
			\% within age Age Rang¢	100.0\%	100.0\%	100.0\%	100.0\%
	2 rural	sex Gender 1 Male	Count	17	17	16	50
			\% within age Age Rang¢	51.5\%	51.5\%	48.5\%	50.5\%
		2 Female	Count	16	16	17	49
			\% within age Age Rang	48.5\%	48.5\%	51.5\%	49.5\%
		Total	Count	33	33	33	99
			\% within age Age Rang¢	100.0\%	100.0\%	100.0\%	100.0\%
2 Central	1 urban	sex Gender 1 Male	Count	17	17	16	50
			\% within age Age Rang¢	50.0\%	51.5\%	37.2\%	45.5\%
		2 Female	Count	17	16	27	60
			\% within age Age Rang¢	50.0\%	48.5\%	62.8\%	54.5\%
		Total	Count	34	33	43	110
			\% within age Age Rang¢	100.0\%	100.0\%	100.0\%	100.0\%
	2 rural	sex Gender 1 Male	Count	17	16	17	50
			\% within age Age Rang¢	51.5\%	47.1\%	73.9\%	55.6\%
		2 Female	Count	16	18	6	40
			\% within age Age Rang¢	48.5\%	52.9\%	26.1\%	44.4\%
		Total	Count	33	34	23	90
			\% within age Age Range	100.0\%	100.0\%	100.0\%	100.0\%
3 Eastern	1 urban	sex Gender 1 Male	Count	50	50	58	158
			\% within age Age Rang¢	50.0\%	50.0\%	53.7\%	51.3\%
		2 Female	Count	50	50	50	150
			\% within age Age Rang¢	50.0\%	50.0\%	46.3\%	48.7\%
		Total	Count	100	100	108	308
			\% within age Age Rangq	100.0\%	100.0\%	100.0\%	100.0\%
	2 rural	sex Gender 1 Male	Count	50	50	42	142
			\% within age Age Rang¢	50.0\%	50.0\%	45.7\%	48.6\%
		2 Female	Count	50	50	50	150
			\% within age Age Rangq	50.0\%	50.0\%	54.3\%	51.4\%
		Total	Count	100	100	92	292
			\% within age Age Rang¢	100.0\%	100.0\%	100.0\%	100.0\%

Demographic Variables with Languages spoken

What languages do you speak * Gender

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.936^{a}	2	.003
Likelihood Ratio	12.076	2	.002
Linear-by-Linear	5.496		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 52.50 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by	Phi	.109	.003
Nominal	Cramer's V	.109	.003
	Contingency Coefficient	.109	.003
N of Valid Cases		998	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

What languages do you speak * Age Range

Crosstab

			age Age Range			Total
			$118-30$	$231-50$	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \end{gathered}$	
language What languages do you speakEnglish only Count \% within language Wha languages do you speah \% within age Age Rang			26	34	49	109
			23.9\%	31.2\%	45.0\%	100.0\%
			7.8\%	10.2\%	14.8\%	10.9\%
2.00 Patw		Count	22	39	44	105
		\% within language Wha languages do you speak	21.0\%	37.1\%	41.9\%	100.0\%
		\% within age Age Rang	6.6\%	11.7\%	13.3\%	10.5\%
3.00 Both		Count	285	261	238	784
		\% within language Wha languages do you speak	36.4\%	33.3\%	30.4\%	100.0\%
		\% within age Age Rang	85.6\%	78.1\%	71.9\%	78.6\%
Total		Count	333	334	331	998
		\% within language Wha languages do you speak	33.4\%	33.5\%	33.2\%	100.0\%
		\% within age Age Rang	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	19.350^{a}		4	.001
Likelihood Ratio	19.761		4	.001
Linear-by-Linear	16.212		1	.000
Association	998			
N of Valid Cases				

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 34.82 .

Symmetric Measures

		Value	Approx. Sig.
Nominal by	Phi	.139	.001
Nominal	Cramer's V	.098	.001
	Contingency Coefficient	.138	.001
N of Valid Cases		998	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

What languages do you speak * parish

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.517^{a}	2	.038
Likelihood Ratio	6.602	2	.037
Linear-by-Linear	4.713		1

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 50.61 .

Symmetric Measures

Nominal by	Phi	.081	.038
Nominal	Cramer's V	.081	.038
	Contingency Coefficient	.081	.038
N of Valid Cases		998	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

What languages do you speak * Region

Crosstab

			region Region			Total
			1 Western	2 Central	3 Eastern	
language What languages do lang you speakCount languages do you spea \% within region Region 			13	18	78	109
			11.9\%	16.5\%	71.6\%	100.0\%
			6.5\%	9.0\%	13.0\%	10.9\%
2.00 Patwa		Count	22	31	52	105
		\% within language Wh languages do you spea	21.0\%	29.5\%	49.5\%	100.0\%
		\% within region Region	11.1\%	15.5\%	8.7\%	10.5\%
3.00 Both		Count	164	151	469	784
		\% within language Wh languages do you spea	20.9\%	19.3\%	59.8\%	100.0\%
		\% within region Region	82.4\%	75.5\%	78.3\%	78.6\%
Tota		Count	199	200	599	998
		\% within language Wh languages do you spea	19.9\%	20.0\%	60.0\%	100.0\%
		\% within region Region	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	13.918^{a}		4
Likelihood Ratio	13.930		4

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 20.94 .

Symmetric Measures

		Value	Approx. Sig.
Nominal by	Phi	.118	.008
Nominal	Cramer's V	.084	.008
	Contingency Coefficient	.117	.008
N of Valid Cases		998	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Government Use By Demographic Variables

If Minister made a speech in Patwa would you think he is: * Gender

Crosstab					
			sex Gender		Total
			1 Male	2 Female	
q8 If Minister made a speech in Patwa would you think he is:	1 Communicate	Count	349	327	676
	better with the public	\% within q8 If Minister made a speech in Patwa would you think he is:	51.6\%	48.4\%	100.0\%
		\% within sex Gender	69.8\%	65.8\%	67.8\%
	2 Talk down to the	Count	91	114	205
	masses	\% within q8 If Minister made a speech in Patwa would you think he is:	44.4\%	55.6\%	100.0\%
		\% within sex Gender	18.2\%	22.9\%	20.6\%
	9 none	Count	60	56	116
		\% within q8 If Minister made a speech in Patwa would you think he is:	51.7\%	48.3\%	100.0\%
		\% within sex Gender	12.0\%	11.3\%	11.6\%
Total		Count	500	497	997
		\% within q8 If Minister made a speech in Patwa would you think he is:	50.2\%	49.8\%	100.0\%
		\% within sex Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$3.425^{\text {a }}$		2
Likelihood Ratio	3.431		2

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 57.83 .

If Minister made a speech in Patwa would you think he is: * Age Range

Crosstab

			age Age Range			Total
			$118-30$	$231-50$	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \end{gathered}$	
q8 If Minister made a speech in Patwa would you think he is:	1 Communicate	Count	225	219	232	676
	better with the public	\% within q8 If Minister made a speech in Patw would you think he is:	33.3\%	32.4\%	34.3\%	100.0\%
		\% within age Age Rang	67.4\%	66.0\%	70.1\%	67.8\%
	2 Talk down to the	Count	71	71	63	205
	masses	\% within q8 If Minister made a speech in Patwo would you think he is:	34.6\%	34.6\%	30.7\%	100.0\%
		\% within age Age Rang	21.3\%	21.4\%	19.0\%	20.6\%
	9 none	Count	38	42	36	116
		\% within q8 If Minister made a speech in Patw would you think he is:	32.8\%	36.2\%	31.0\%	100.0\%
		\% within age Age Rang	11.4\%	12.7\%	10.9\%	11.6\%
Total		Count	334	332	331	997
		\% within q8 If Minister made a speech in Patw would you think he is:	33.5\%	33.3\%	33.2\%	100.0\%
		\% within age Age Rang	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	1.472^{a}		4
Likelihood Ratio	1.474		4
Linear-by-Linear	.100		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 38.51 .

If Minister made a speech in Patwa would you think he is: * parish

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.218^{a}		2
Likelihood Ratio	3.224		.200
Linear-by-Linear	1.355		1

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 55.73 .

If Minister made a speech in Patwa would you think he is: * Region

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.448^{a}		4
Likelihood Ratio	12.883		4

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 23.04 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.111	.014
N of Valid Cases		997	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Stereotypes by Demographic Variables

Is more intelligent * Gender

Crosstab

			sex Gender		Total
			1 Male	2 Female	
rq9a Is more intelligent	1.00 Patwa	Count	44	29	73
		\% within sex Gender	9.1\%	6.2\%	7.7\%
	2.00 English	Count	260	290	550
		\% within sex Gender	53.9\%	61.7\%	57.8\%
	3.00 Both	Count	178	151	329
		\% within sex Gender	36.9\%	32.1\%	34.6\%
Total		Count	482	470	952
		\% within sex Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.784^{a}	2	.034
Likelihood Ratio	6.808	2	.033
Linear-by-Linear	.231		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 36.04 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.084	.034
N of Valid Cases		952	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more intelligent * Age Range

Crosstab

			age Age Range			Total
			1 18-30	2 31-50	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \end{gathered}$	
rq9a Is more intelligent	1.00 Patwa	Count	24	21	28	73
		\% within age Age Range	7.5\%	6.8\%	8.8\%	7.7\%
	2.00 English	Count	182	172	196	550
		\% within age Age Range	56.7\%	55.3\%	61.3\%	57.8\%
	3.00 Both	Count	115	118	96	329
		\% within age Age Range	35.8\%	37.9\%	30.0\%	34.6\%
Total		Count	321	311	320	952
		\% within age Age Range	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.009^{a}		4
Likelihood Ratio	5.051		4

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 23.85 .

Is more intelligent * parish

Crosstab

			urbanru parish		
			urban	2 rural	Total
rq9a Is more					
intelligent	1.00 Patwa	Count	27	46	73
		\% within urbanru parish	5.6%	9.8%	7.7%
	2.00 English	Count	272	278	550
		\% within urbanru parish	56.2%	59.4%	57.8%
	3.00 Both	Count	185	144	329
		\% within urbanru parish	38.2%	30.8%	34.6%
Total	Count	484	468	952	
		\% within urbanru parish	100.0%	100.0%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	9.854^{a}	2	.007
Likelihood Ratio	9.922	2	.007
Linear-by-Linear	9.304	1	.002
Association	952		
N of Valid Cases			

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 35.89 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal \quad Contingency Coefficient	.101	.007	
N of Valid Cases		952	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more intelligent * Region

Crosstab

			region Region			Total
			1 Western	2 Central	3 Eastern	
rq9a Is more intelligent	1.00 Patwa	Count	10	20	43	73
		\% within region Region	5.2\%	10.3\%	7.6\%	7.7\%
	2.00 English	Count	127	121	302	550
		\% within region Region	66.1\%	62.1\%	53.5\%	57.8\%
	3.00 Both	Count	55	54	220	329
		\% within region Region	28.6\%	27.7\%	38.9\%	34.6\%
Total		Count	192	195	565	952
		\% within region Region	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.733^{a}		4
Likelihood Ratio	15.884		4

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 14.72 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.128	.003
N of Valid Cases		952	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more honest * Gender

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.139^{a}		2
Likelihood Ratio	3.143		2

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 136.26 .

Is more honest * Age Range

Crosstab

			age Age Range			Total
			1 18-30	2 31-50	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \end{gathered}$	
rq9b Is more honest	1.00 Patwa	Count	108	87	88	283
		\% within age Age Range	34.8\%	28.3\%	29.6\%	31.0\%
	2.00 English	Count	79	93	106	278
		\% within age Age Range	25.5\%	30.3\%	35.7\%	30.4\%
	3.00 Both	Count	123	127	103	353
		\% within age Age Range	39.7\%	41.4\%	34.7\%	38.6\%
Total		Count	310	307	297	914
		\% within age Age Range	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	9.438^{a}		4
Likelihood Ratio	9.431		4
Linear-by-Linear	.002		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 90.33 .

Is more honest * parish

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. $(2-$ sided $)$
Pearson Chi-Square	11.610^{a}		2
Likelihood Ratio	11.642		2

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 138.39 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal \quad Contingency Coefficient	.112	.003	
N of Valid Cases		914	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more honest * Region

Crosstab

			region Region			Total
			1 Western	2 Central	3 Eastern	
rq9b Is more honest	1.00 Patwa	Count	55	54	174	283
		\% within region Region	29.1\%	29.2\%	32.2\%	31.0\%
	2.00 English	Count	70	67	141	278
		\% within region Region	37.0\%	36.2\%	26.1\%	30.4\%
	3.00 Both	Count	64	64	225	353
		\% within region Region	33.9\%	34.6\%	41.7\%	38.6\%
Total		Count	189	185	540	914
		\% within region Region	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	11.918^{a}		4
Likelihood Ratio	11.837		4
Linear-by-Linear	.557		1

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 56.27 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal \quad Contingency Coefficient	.113	.018	
N of Valid Cases		914	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more educated * Gender

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	1.589^{a}		2
Likelihood Ratio	1.595	2	.452
Linear-by-Linear	.069		1

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 29.32 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.041	.452
N of Valid Cases		958	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more educated * Age Range

Crosstab

				Age Ran		
			$118-30$	$231-50$	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \end{gathered}$	Total
rq9c Is more	1.00 Patwa	Count	17	21	21	59
educated		\% within age Age Range	5.3\%	6.6\%	6.6\%	6.2\%
	2.00 English	Count	179	188	224	591
		\% within age Age Range	55.6\%	58.8\%	70.9\%	61.7\%
	3.00 Both	Count	126	111	71	308
		\% within age Age Range	39.1\%	34.7\%	22.5\%	32.2\%
Total		Count	322	320	316	958
		\% within age Age Range	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	22.067^{a}		4
Likelihood Ratio	22.717		4

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 19.46 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.150	.000
N of Valid Cases		958	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more educated * parish

Crosstab

			urbanru parish		Total
			1 urban	2 rural	
rq9c Is more educated	1.00 Patwa	Count	22	37	59
		\% within urbanru parish	4.5\%	7.9\%	6.2\%
	2.00 English	Count	298	293	591
		\% within urbanru parish	60.9\%	62.5\%	61.7\%
	3.00 Both	Count	169	139	308
		\% within urbanru parish	34.6\%	29.6\%	32.2\%
Total		Count	489	469	958
		\% within urbanru parish	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.363^{a}		2
Likelihood Ratio	6.407		2
Linear-by-Linear	5.238		1

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 28.88 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.081	.042
N of Valid Cases		958	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more educated * Region

Crosstab

			region Region			Total
			1 Western	2 Central	3 Eastern	
rq9c Is more educated	1.00 Patwa	Count	12	10	37	59
		\% within region Region	6.1\%	5.2\%	6.5\%	6.2\%
	2.00 English	Count	129	121	341	591
		\% within region Region	65.5\%	62.7\%	60.0\%	61.7\%
	3.00 Both	Count	56	62	190	308
		\% within region Region	28.4\%	32.1\%	33.5\%	32.2\%
Total		Count	197	193	568	958
		\% within region Region	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.309^{a}	4	.679
Likelihood Ratio	2.348	4	.672
Linear-by-Linear	.805	1	.370
Association	958		
N of Valid Cases			

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 11.89 .

Is more friendly * Gender

Crosstab

			sex Gender		
			1 Male	2 Female	Total
rq9d Is					
more friendly	1.00 Patwa	Count	189	190	379
		\% within sex Gender	39.2%	40.4%	39.8%
	2.00 English	Count	126	114	240
		\% within sex Gender	26.1%	24.3%	25.2%
	3.00 Both	Count	167	166	333
		\% within sex Gender	34.6%	35.3%	35.0%
Total	Count	482	470	952	
		\% within sex Gender	100.0%	100.0%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$.454^{\mathrm{a}}$	2	.797
Likelihood Ratio	.455	2	.797
Linear-by-Linear	.009		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 118.49 .

Is more friendly * Age Range

Crosstab

			age Age Range			Total
			1 18-30	$231-50$	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \end{gathered}$	
rq9d Is more friendly	1.00 Patwa	Count	123	134	122	379
		\% within age Age Range	38.2\%	42.1\%	39.1\%	39.8\%
	2.00 English	Count	75	71	94	240
		\% within age Age Range	23.3\%	22.3\%	30.1\%	25.2\%
	3.00 Both	Count	124	113	96	333
		\% within age Age Range	38.5\%	35.5\%	30.8\%	35.0\%
Total		Count	322	318	312	952
		\% within age Age Range	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.950^{a}		4
Likelihood Ratio	7.853		4
Linear-by-Linear	1.597		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 78.66 .

Is more friendly * parish

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	15.874^{a}		2
Likelihood Ratio	15.949		2

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 117.98 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.128	.000
N of Valid Cases		952	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more friendly * Region

Crosstab

			region Region			Total
			1 Western	2 Central	3 Eastern	
rq9d Is more friendly	1.00 Patwa	Count	66	76	237	379
		\% within region Region	34.0\%	39.6\%	41.9\%	39.8\%
	2.00 English	Count	59	54	127	240
		\% within region Region	30.4\%	28.1\%	22.4\%	25.2\%
	3.00 Both	Count	69	62	202	333
		\% within region Region	35.6\%	32.3\%	35.7\%	35.0\%
Total		Count	194	192	566	952
		\% within region Region	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	7.193^{a}		4
Likelihood Ratio	7.191		4
Linear-by-Linear	.874		1
Association	952		
N of Valid Cases	.126		

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 48.40 .

Has more money * Gender

Crosstab

			sex Gender		Total
			1 Male	2 Female	
rq9e Has more money	1.00 Patwa	Count	46	31	77
		\% within sex Gender	10.0\%	7.5\%	8.8\%
	2.00 English	Count	201	189	390
		\% within sex Gender	43.7\%	45.8\%	44.7\%
	3.00 Both	Count	213	193	406
		\% within sex Gender	46.3\%	46.7\%	46.5\%
Total		Count	460	413	873
		\% within sex Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	1.751^{a}	2	.417
Likelihood Ratio	1.764	2	.414
Linear-by-Linear	.451		1

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 36.43 .

Has more money * Age Range

Crosstab

			age Age Range			Total
			1 18-30	$231-50$	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \end{gathered}$	
rq9e Has more money	1.00 Patwa	Count	24	25	28	77
		\% within age Age Range	7.8\%	8.8\%	9.9\%	8.8\%
	2.00 English	Count	124	116	150	390
		\% within age Age Range	40.4\%	40.8\%	53.2\%	44.7\%
	3.00 Both	Count	159	143	104	406
		\% within age Age Range	51.8\%	50.4\%	36.9\%	46.5\%
Total		Count	307	284	282	873
		\% within age Age Range	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. $(2-$ sided $)$
Pearson Chi-Square	15.882^{a}		4
Likelihood Ratio	16.028		4

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 24.87 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.134	.003
N of Valid Cases		873	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Has more money * parish

Crosstab

			urbanru parish		Total
			1 urban	2 rural	
rq9e Has more money	1.00 Patwa	Count	35	42	77
		\% within urbanru parish	7.8\%	9.8\%	8.8\%
	2.00 English	Count	194	196	390
		\% within urbanru parish	43.5\%	45.9\%	44.7\%
	3.00 Both	Count	217	189	406
		\% within urbanru parish	48.7\%	44.3\%	46.5\%
Total		Count	446	427	873
		\% within urbanru parish	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.165^{a}	2	.339
Likelihood Ratio	2.167	2	.338
Linear-by-Linear	2.157		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 37.66 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.050	.339
N of Valid Cases		873	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Has more money * Region

Crosstab

			region Region			Total
			1 Western	2 Central	3 Eastern	
rq9e Has more money	1.00 Patwa	Count	14	16	47	77
		\% within region Region	7.7\%	9.1\%	9.1\%	8.8\%
	2.00 English	Count	89	86	215	390
		\% within region Region	49.2\%	49.1\%	41.6\%	44.7\%
	3.00 Both	Count	78	73	255	406
		\% within region Region	43.1\%	41.7\%	49.3\%	46.5\%
Total		Count	181	175	517	873
		\% within region Region	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.210^{a}		4
Likelihood Ratio	5.221		4

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 15.44 .

Is more helpful * Gender

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	3.444^{a}	2	.179
Likelihood Ratio	3.449	2	.178
Linear-by-Linear	2.075		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 144.14 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.060	.179
N of Valid Cases		940	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more helpful * Age Range

Crosstab

			age Age Range			Total
			1 18-30	$231-50$	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \end{gathered}$	
rq9f Is more helpful	1.00 Patwa	Count	96	95	109	300
		\% within age Age Range	30.1\%	30.5\%	35.2\%	31.9\%
	2.00 English	Count	84	101	107	292
		\% within age Age Range	26.3\%	32.5\%	34.5\%	31.1\%
	3.00 Both	Count	139	115	94	348
		\% within age Age Range	43.6\%	37.0\%	30.3\%	37.0\%
Total		Count	319	311	310	940
		\% within age Age Range	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.683^{a}		4
Likelihood Ratio	12.789		4

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 96.30 .

Symmetric Measures

	Value	Approx. Sig.
Nominal by Nominal Contingency Coefficient N of Valid Cases	$\begin{array}{r} \hline .115 \\ 940 \end{array}$. 013

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more helpful * parish

Crosstab

			urbanru parish		Total
			1 urban	2 rural	
rq9f Is more helpful	1.00 Patwa	Count	152	148	300
		\% within urbanru parish	31.6\%	32.2\%	31.9\%
	2.00 English	Count	132	160	292
		\% within urbanru parish	27.4\%	34.9\%	31.1\%
	3.00 Both	Count	197	151	348
		\% within urbanru parish	41.0\%	32.9\%	37.0\%
Total		Count	481	459	940
		\% within urbanru parish	100.0\%	100.0\%	100.0\%

Chi-Square Tests

$\left.\begin{array}{|l|c|r|r|}\hline & \text { Value } & \text { df } & \\ \hline \text { Pearson Chi-Square } & 8.308^{\mathrm{a}} & & 2 \\ \text { (2-sided) }\end{array}\right] .016$
a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 142.58 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.094	.016
N of Valid Cases		940	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is more helpful * Region

Crosstab

			region Region			
			1 Western	2 Central	3 Eastern	Total
rq9f Is more helpful	1.00 Patwa	Count	57	56	187	300
		\% within region Region	30.2%	29.8%	33.2%	31.9%
	2.00 English	Count	68	67	157	292
		\% within region Region	36.0%	35.6%	27.9%	31.1%
		Count	64	65	219	348
		\% within region Region	33.9%	34.6%	38.9%	37.0%
Total	Count	189	188	563	940	
		\% within region Region	100.0%	100.0%	100.0%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.663^{a}		4
Likelihood Ratio	6.618		4
Linear-by-Linear	.084		1

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 58.40 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.084	.155
N of Valid Cases		940	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Education by Demographic Variables

Which school is better? * Gender

Crosstab

				sex Gender		Total
				1 Male	2 Female	
q10 Which school is better?	1 English school only	Count		133	155	288
		\% within sex	Gender	26.6\%	31.3\%	28.9\%
	2 English \& Patwa	Count		367	341	708
	School	\% within sex	Gender	73.4\%	68.8\%	71.1\%
Total		Count		500	496	996
		\% within sex	Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)	
Pearson Chi-Square	2.619^{b}	1	.106			
Continuity Correction	2.398		1	.121		
Likelihood Ratio	2.621		1	.105		
Fisher's Exact Test					.108	.061
Linear-by-Linear	2.617		1	.106		
Association	996					
N of Valid Cases						

a. Computed only for a 2×2 table
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 143 . 42.

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.051	.106
N of Valid Cases		996	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Which school is better? * Age Range

Crosstab

		age Age Range			Total
		1 18-30	$231-50$	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \end{gathered}$	
q10 Which 1 English school on Countschool is \quad \% within age Age Ran		83	83	122	288
		24.9\%	24.9\%	37.0\%	28.9\%
better? 2 English \& Patwa	Count	250	250	208	708
School	\% within age Age Ran	75.1\%	75.1\%	63.0\%	71.1\%
Total	Count	333	333	330	996
	\% within age Age Ran	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$15.575^{\text {a }}$		2
Likelihood Ratio	15.244		2

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 95.42 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.124	.000
N of Valid Cases		996	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

q10 Which school is better? * urbanru parish

Crosstab

			urbanru parish		Total
			1 urban	2 rural	
q10 Which school is better?	1 English school only	Count	164	124	288
		\% within urbanru parish	31.6\%	26.0\%	28.9\%
	2 English \& Patwa	Count	355	353	708
	School	\% within urbanru parish	68.4\%	74.0\%	71.1\%
Total		Count	519	477	996
		\% within urbanru parish	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	$3.797{ }^{\text {b }}$	1	. 051		
Continuity Correction ${ }^{\text {² }}$	3.529	1	. 060		
Likelihood Ratio	3.808	1	. 051		
Fisher's Exact Test				. 059	. 030
Linear-by-Linear Association	3.793	1	. 051		
N of Valid Cases	996				

a. Computed only for a 2×2 table
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 137 . 93.

q10 Which school is better? * region Region

Crosstab

		region Region			Total
		1 Western	2 Central	3 Eastern	
q10 Which 1 English school onl: Countschool is\% within region Regio		63	51	174	288
		31.5\%	25.8\%	29.1\%	28.9\%
better? 2 English \& Patwa	Count	137	147	424	708
School	\% within region Regio	68.5\%	74.2\%	70.9\%	71.1\%
Total	Count	200	198	598	996
	\% within region Regio	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	1.620^{a}	2	.445
Likelihood Ratio	1.632	2	.442
Linear-by-Linear	.127		1

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 57.25 .

Is Patwa a Language by Demographic Variables

Is Patwa a Language * Gender

Crosstab				
		sex Gender		Total
		1 Male	2 Female	
q12 Is Patwa a Language$\quad 1$ Yes	Count	405	390	795
	\% within sex Gender	80.8\%	78.2\%	79.5\%
	Count	96	109	205
	\% within sex Gender	19.2\%	21.8\%	20.5\%
Total	Count	501	499	1000
	\% within sex Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	$1.103^{\text {b }}$		1	.294	
Continuity Correction	.945		1	.331	
Likelihood Ratio	1.104		1	.293	
Fisher's Exact Test					
Linear-by-Linear	1.102		1	.294	
Association	1000				
N of Valid Cases					

a. Computed only for a 2×2 table
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 102 . 30.

Is Patwa a Language * Age Range

Crosstab

		age Age Range			Total
		1 18-30	2 31-50	$\begin{gathered} 3 \text { 51-80+ } \\ \text { years } \\ \hline \end{gathered}$	
q12 Is Patwa 1 Yes a Language	Count	276	276	243	795
	\% within age Age Range	82.6\%	82.6\%	73.2\%	79.5\%
2 No	Count	58	58	89	205
	\% within age Age Range	17.4\%	17.4\%	26.8\%	20.5\%
Total	Count	334	334	332	1000
	\% within age Age Range	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	12.132^{a}		2
Likelihood Ratio	11.769		2
Linear-by-Linear	9.080		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 68.06 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.109	.002
N of Valid Cases		1000	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Is Patwa a Language * parish

Crosstab

			urbanru parish		
		1 urban		2 rural	
q12 Is Patwa	1 Yes	Count	413	382	795
a Language		\% within urbanru parish	79.6%	79.4%	79.5%
	2 No	Count	106	99	205
		\% within urbanru parish	20.4%	20.6%	20.5%
Total	Count	519	481	1000	
		\% within urbanru parish	100.0%	100.0%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
Pearson Chi-Square	. $004{ }^{\text {b }}$	1	. 951		
Continuity Correction ${ }^{\text {a }}$. 000	1	1.000		
Likelihood Ratio	. 004	1	. 951		
Fisher's Exact Test				1.000	. 506
Linear-by-Linear Association	. 004	1	. 951		
N of Valid Cases	1000				

a. Computed only for a 2×2 table
b. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 98 . 61.

Is Patwa a Language * Region

Crosstab

			region Region			
			1 Western	2 Central	3 Eastern	Total
q12 Is Patwa	1 Yes	Count	153	155	487	795
a Language	\% within region Region	76.5%	77.5%	81.2%	79.5%	
	2 No	Count	47	45	113	205
		\% within region Region	23.5%	22.5%	18.8%	20.5%
Total	Count	200	200	600	1000	
		\% within region Region	100.0%	100.0%	100.0%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.618^{a}		2
Likelihood Ratio	2.591		2
Linear-by-Linear	2.452		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 41.00 .

Official Language by Demographic Variables

Should Patwa be an official language? * Gender

Crosstab

				sex Gender		Total
				1 Male	2 Female	
q13 Should Patwa be an official language?	1 Yes	Count		358	326	684
		\% within sex	Gender	71.7\%	65.3\%	68.5\%
	2 No	Count		123	141	264
		\% within sex	Gender	24.6\%	28.3\%	26.5\%
	3 Don't Know	Count		18	32	50
		\% within sex	Gender	3.6\%	6.4\%	5.0\%
Total		Count		499	499	998
		\% within sex	Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	6.644^{a}	2	.036
Likelihood Ratio	6.699	2	.035
Linear-by-Linear	6.382		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 25.00 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal	Contingency Coefficient	.081	.036
N of Valid Cases		998	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Should Patwa be an official language? * Age Range

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)	
Pearson Chi-Square	4.420^{a}		4	.352
Likelihood Ratio	4.434		4	.350
Linear-by-Linear	3.389		1	.066
Association	998			
N of Valid Cases				

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 16.63 .

Should Patwa be an official language? * parish

Crosstab

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	$6.574^{\text {a }}$		2
Likelihood Ratio	6.600		.037
Linear-by-Linear	4.563		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 24.10 .

Symmetric Measures

	Value	Approx. Sig.	
Nominal by Nominal \quad Contingency Coefficient	.081	.037	
N of Valid Cases		998	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Should Patwa be an official language? * Region

Crosstab

			region Region			Total
			1 Western	2 Central	3 Eastern	
q13 Should Patwa be an official language?	1 Yes	Count	127	143	414	684
		\% within region Regio	64.1\%	71.5\%	69.0\%	68.5\%
	2 No	Count	60	48	156	264
		\% within region Regio	30.3\%	24.0\%	26.0\%	26.5\%
	3 Don't Know	Count	11	9	30	50
		\% within region Regio	5.6\%	4.5\%	5.0\%	5.0\%
Total		Count	198	200	600	998
		\% within region Regio	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	2.666^{a}		4
Likelihood Ratio	2.639		4
Linear-by-Linear	.754		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 9.92 .

